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Installing IPython Parallel

As of 4.0, IPython parallel is now a standalone package called ipyparallel.
You can install it with:

pip install ipyparallel





or:

conda install ipyparallel





And if you want the IPython clusters tab extension in your Jupyter Notebook dashboard:

ipcluster nbextension enable
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Changes in IPython Parallel


6.1.1


	Fix regression in 6.1.0 preventing BatchSpawners (PBS, etc.) from launching with ipcluster.







6.1.0

Compatibility fixes with related packages:


	Fix compatibility with pyzmq 17 and tornado 5.


	Fix compatibility with IPython ≥ 6.


	Improve compatibility with dask.distributed ≥ 1.18.




New features:


	Add namespace to BatchSpawners for easier extensibility.


	Support serializing partial functions.


	Support hostnames for machine location, not just ip addresses.


	Add --location argument to ipcluster for setting the controller location.
It can be a hostname or ip.


	Engine rank matches MPI rank if engines are started with --mpi.


	Avoid duplicate pickling of the same object in maps, etc.




Documentation has been improved significantly.




6.0.2

Upload fixed sdist for 6.0.1.




6.0.1

Small encoding fix for Python 2.




6.0

Due to a compatibility change and semver, this is a major release. However, it is not a big release.
The main compatibility change is that all timestamps are now timezone-aware UTC timestamps.
This means you may see comparison errors if you have code that uses datetime objects without timezone info (so-called naïve datetime objects).

Other fixes:


	Rename Client.become_distributed() to Client.become_dask().
become_distributed() remains as an alias.


	import joblib from a public API instead of a private one
when using IPython Parallel as a joblib backend.


	Compatibility fix in extensions for security changes in notebook 4.3







5.2


	Fix compatibility with changes in ipykernel 4.3, 4.4


	Improve inspection of @remote decorated functions


	Client.wait() accepts any Future.


	Add --user flag to ipcluster nbextension


	Default to one core per worker in Client.become_distributed().
Override by specifying ncores keyword-argument.


	Subprocess logs are no longer sent to files by default in ipcluster.







5.1


dask, joblib

IPython Parallel 5.1 adds integration with other parallel computing tools,
such as dask.distributed [https://distributed.readthedocs.io] and joblib [https://pythonhosted.org/joblib].

To turn an IPython cluster into a dask.distributed cluster,
call become_distributed():

executor = client.become_distributed(ncores=1)





which returns a distributed Executor instance.

To register IPython Parallel as the backend for joblib:

import ipyparallel as ipp
ipp.register_joblib_backend()








nbextensions

IPython parallel now supports the notebook-4.2 API for enabling server extensions,
to provide the IPython clusters tab:

jupyter serverextension enable --py ipyparallel
jupyter nbextension install --py ipyparallel
jupyter nbextension enable --py ipyparallel





though you can still use the more convenient single-call:

ipcluster nbextension enable





which does all three steps above.




Slurm support

Slurm [https://computing.llnl.gov/tutorials/linux_clusters] support is added to ipcluster.




5.1.0

5.1.0 on GitHub [https://github.com/ipython/ipyparallel/milestones/5.1]






5.0


5.0.1

5.0.1 on GitHub [https://github.com/ipython/ipyparallel/milestones/5.0.1]


	Fix imports in use_cloudpickle(), use_dill().


	Various typos and documentation updates to catch up with 5.0.







5.0.0

5.0 on GitHub [https://github.com/ipython/ipyparallel/milestones/5.0]

The highlight of ipyparallel 5.0 is that the Client has been reorganized a bit to use Futures.
AsyncResults are now a Future subclass, so they can be yield ed in coroutines, etc.
Views have also received an Executor interface.
This rewrite better connects results to their handles,
so the Client.results cache should no longer grow unbounded.


See also


	The Executor API ipyparallel.ViewExecutor


	Creating an Executor from a Client: ipyparallel.Client.executor()


	Each View has an executor attribute






Part of the Future refactor is that Client IO is now handled in a background thread,
which means that Client.spin_thread() is obsolete and deprecated.

Other changes:


	Add ipcluster nbextension enable|disable to toggle the clusters tab in Jupyter notebook




Less interesting development changes for users:

Some IPython-parallel extensions to the IPython kernel have been moved to the ipyparallel package:


	ipykernel.datapub is now ipyparallel.datapub


	ipykernel Python serialization is now in ipyparallel.serialize


	apply_request message handling is implememented in a Kernel subclass,
rather than the base ipykernel Kernel.









4.1

4.1 on GitHub [https://github.com/ipython/ipyparallel/milestones/4.1]


	Add Client.wait_interactive()


	Improvements for specifying engines with SSH launcher.







4.0

4.0 on GitHub [https://github.com/ipython/ipyparallel/milestones/4.0]

First release of ipyparallel as a standalone package.







          

      

      

    

  

    
      
          
            
  
Overview and getting started


Examples

We have various example scripts and notebooks for using ipyparallel in our
examples directory, or they can be viewed using nbviewer [http://nbviewer.jupyter.org/github/ipython/ipyparallel/blob/master/examples/Index.ipynb].
Some of these are covered in more detail in the examples section.




Introduction

This section gives an overview of IPython’s
architecture for parallel and distributed computing. This architecture
abstracts out parallelism in a general way, enabling IPython to
support many different styles of parallelism, including:


	Single program, multiple data (SPMD) parallelism


	Multiple program, multiple data (MPMD) parallelism


	Message passing using MPI


	Task farming


	Data parallel


	Combinations of these approaches


	Custom user-defined approaches




Most importantly, IPython enables all types of parallel applications to
be developed, executed, debugged, and monitored interactively. Hence,
the I in IPython.  The following are some example use cases for IPython:


	Quickly parallelize algorithms that are embarrassingly parallel
using a number of simple approaches.  Many simple things can be
parallelized interactively in one or two lines of code.


	Steer traditional MPI applications on a supercomputer from an
IPython session on your laptop.


	Analyze and visualize large datasets (that could be remote and/or
distributed) interactively using IPython and tools like
matplotlib.


	Develop, test and debug new parallel algorithms
(that may use MPI) interactively.


	Tie together multiple MPI jobs running on different systems into
one giant distributed and parallel system.


	Start a parallel job on your cluster and then have a remote
collaborator connect to it and pull back data into their
local IPython session for plotting and analysis.


	Run a set of tasks on a set of CPUs using dynamic load balancing.





Tip

At the SciPy 2014 conference in Austin, Min Ragan-Kelley presented a
complete 4-hour tutorial on the use of these features, and all the materials
for the tutorial are now available online [https://github.com/minrk/IPython-parallel-tutorial/blob/master/Index.ipynb].  That tutorial provides an
excellent, hands-on oriented complement to the reference documentation
presented here.






Architecture overview


[image: _images/wideView.png]


The IPython architecture consists of four components:


	The IPython engine


	The IPython hub


	The IPython schedulers


	The IPython client




These components live in the ipyparallel package,
which can be installed with pip or conda.


IPython engine

The IPython engine is an extension of the IPython kernel for Jupyter.
The engine listens for requests over the network, runs code, and returns results.
IPython parallel extends the Jupyter messaging protocol [https://jupyter-client.readthedocs.io/en/stable/messaging.html#messaging]
to support native Python object serialization and add some additional commands.
When multiple engines are started, parallel and distributed computing becomes possible.




IPython controller

The IPython controller processes provide an interface for working with a set of engines.
At a general level, the controller is a collection of processes to which IPython engines
and clients can connect. The controller is composed of a Hub and a collection of
Schedulers. These Schedulers are typically run in separate processes on the
same machine as the Hub.

The controller also provides a single point of contact for users who wish to
access the engines connected to the controller. There are different ways of
working with a controller. In IPython, all of these models are implemented via
the View.apply() method, after
constructing View objects to represent subsets of engines. The two
primary models for interacting with engines are:


	A Direct interface, where engines are addressed explicitly


	A LoadBalanced interface, where the Scheduler is entrusted with assigning work to
appropriate engines




Advanced users can readily extend the View models to enable other
styles of parallelism.


Note

A single controller and set of engines can be used with multiple models
simultaneously. This opens the door for lots of interesting things.




The Hub

The center of an IPython cluster is the Hub. This is the process that keeps
track of engine connections, schedulers, clients, as well as all task requests and
results. The primary role of the Hub is to facilitate queries of the cluster state, and
minimize the necessary information required to establish the many connections involved in
connecting new clients and engines.




Schedulers

All actions that can be performed on the engine go through a Scheduler. While the engines
themselves block when user code is run, the schedulers hide that from the user to provide
a fully asynchronous interface to a set of engines.






IPython client and views

There is one primary object, the Client, for connecting to a cluster.
For each execution model, there is a corresponding View. These views
allow users to interact with a set of engines through the interface. Here are the two default
views:


	The DirectView class for explicit addressing.


	The LoadBalancedView class for destination-agnostic scheduling.







Security

IPython uses ZeroMQ for networking, and does not yet support ZeroMQ’s encryption and authentication.
By default, no IPython
connections are encrypted, but open ports only listen on localhost. The only
source of encryption for IPython is via ssh-tunnel. IPython supports both shell
(openssh) and paramiko based tunnels for connections.  There is a key used to
authenticate requests, but due to the lack of encryption, it does not provide
significant security if loopback traffic is compromised.

In our architecture, the controller is the only process that listens on
network ports, and is thus the main point of vulnerability. The standard model
for secure connections is to designate that the controller listen on
localhost, and use ssh-tunnels to connect clients and/or
engines.

To connect and authenticate to the controller an engine or client needs
some information that the controller has stored in a JSON file.
The JSON files may need to be copied to a location where
the clients and engines can find them. Typically, this is the
~/.ipython/profile_default/security directory on the host where the
client/engine is running, which could be on a different filesystemx than the controller.
Once the JSON files are copied over, everything should work fine.

Currently, there are two JSON files that the controller creates:


	ipcontroller-engine.json

	This JSON file has the information necessary for an engine to connect
to a controller.



	ipcontroller-client.json

	The client’s connection information.  This may not differ from the engine’s,
but since the controller may listen on different ports for clients and
engines, it is stored separately.





ipcontroller-client.json will look something like this, under default localhost
circumstances:

{
  "url":"tcp:\/\/127.0.0.1:54424",
  "exec_key":"a361fe89-92fc-4762-9767-e2f0a05e3130",
  "ssh":"",
  "location":"yourmachine.local"
}





If, however, you are running the controller on a work node on a cluster, you will likely
need to use ssh tunnels to connect clients from your laptop to it.  You will also
probably need to instruct the controller to listen for engines coming from other work nodes
on the cluster.  An example of ipcontroller-client.json, as created by:

$> ipcontroller --ip=* --ssh=login.mycluster.com





{
  "url":"tcp:\/\/*:54424",
  "exec_key":"a361fe89-92fc-4762-9767-e2f0a05e3130",
  "ssh":"login.mycluster.com",
  "location":"yourmachine.local"
}





More details of how these JSON files are used are given below.

A detailed description of the security model and its implementation in IPython
can be found here.


Warning

Even at its most secure, the Controller listens on ports on localhost, and
every time you make a tunnel, you open a localhost port on the connecting
machine that points to the Controller. If localhost on the Controller’s
machine, or the machine of any client or engine, is untrusted, then your
Controller is insecure.








Getting Started

To use IPython for parallel computing, you need to start one instance of the
controller and one or more instances of the engine. Initially, it is best to
start a controller and engines on a single host using the
ipcluster command. To start a controller and 4 engines on your
local machine:

$ ipcluster start -n 4





More details about starting the IPython controller and engines can be found
here.

Once you have started the IPython controller and one or more engines, you
are ready to use the engines to do something useful. To make sure
everything is working correctly, try the following commands:

In [1]: import ipyparallel as ipp

In [2]: c = ipp.Client()

In [3]: c.ids
Out[3]: [0, 1, 2, 3]

In [4]: c[:].apply_sync(lambda : "Hello, World")
Out[4]: [ 'Hello, World', 'Hello, World', 'Hello, World', 'Hello, World' ]





When a client is created with no arguments, the client tries to find the corresponding JSON file
in the local ~/.ipython/profile_default/security directory. Or if you specified a profile,
you can use that with the Client.  This should cover most cases:

In [2]: c = ipp.Client(profile='myprofile')





If you have put the JSON file in a different location or it has a different name, create the
client like this:

In [2]: c = ipp.Client('/path/to/my/ipcontroller-client.json')





Remember, a client needs to be able to see the Hub’s ports to connect. So if they are on a
different machine, you may need to use an ssh server to tunnel access to that machine,
then you would connect to it with:

In [2]: c = ipp.Client('/path/to/my/ipcontroller-client.json', sshserver='me@myhub.example.com')





Where ‘myhub.example.com’ is the url or IP address of the machine on
which the Hub process is running (or another machine that has direct access to the Hub’s ports).

The SSH server may already be specified in ipcontroller-client.json, if the controller was
instructed at its launch time.

You are now ready to learn more about the Direct and LoadBalanced interfaces to the
controller.


	ZeroMQ

	http://zeromq.org/











          

      

      

    

  

    
      
          
            
  
Starting the IPython controller and engines

To use IPython for parallel computing, you need to start one instance of
the controller and one or more instances of the engine. The controller
and each engine can run on different machines or on the same machine.
Because of this, there are many different possibilities.

Broadly speaking, there are two ways of going about starting a controller and engines:


	In an automated manner using the ipcluster command.


	In a more manual way using the ipcontroller and
ipengine commands.




This document describes both of these methods. We recommend that new users
start with the ipcluster command as it simplifies many common usage
cases.


General considerations

Before delving into the details about how you can start a controller and
engines using the various methods, we outline some of the general issues that
come up when starting the controller and engines. These things come up no
matter which method you use to start your IPython cluster.

If you are running engines on multiple machines, you will likely need to instruct the
controller to listen for connections on an external interface. This can be done by specifying
the ip argument on the command-line, or the HubFactory.ip configurable in
ipcontroller_config.py.

If your machines are on a trusted network, you can safely instruct the controller to listen
on all interfaces with:

$> ipcontroller --ip="*"





Or you can set the same behavior as the default by adding the following line to your ipcontroller_config.py:

c.HubFactory.ip = '*'
# c.HubFactory.location = 'controllerhost.tld'






Note

--ip=* instructs ZeroMQ to listen on all interfaces,
but it does not contain the IP needed for engines / clients
to know where the controller is.
This can be specified with the --location argument,
such as --location=10.0.0.1, or --location=server.local,
the specific IP address or hostname of the controller, as seen from engines and/or clients.
IPython uses socket.gethostname() for this value by default,
but it may not always be the right value.
Check the location field in your connection files if you are having connection trouble.




Changed in version 6.1: Support hostnames in location, in addition to ip addresses.




Note

Due to the lack of security in ZeroMQ, the controller will only listen for connections on
localhost by default. If you see Timeout errors on engines or clients, then the first
thing you should check is the ip address the controller is listening on, and make sure
that it is visible from the timing out machine.




See also

Our notes on security in the new parallel computing code.



Let’s say that you want to start the controller on host0 and engines on
hosts host1-hostn. The following steps are then required:


	Start the controller on host0 by running ipcontroller on
host0.  The controller must be instructed to listen on an interface visible
to the engine machines, via the ip command-line argument or HubFactory.ip
in ipcontroller_config.py.


	Move the JSON file (ipcontroller-engine.json) created by the
controller from host0 to hosts host1-hostn.


	Start the engines on hosts host1-hostn by running
ipengine.  This command has to be told where the JSON file
(ipcontroller-engine.json) is located.




At this point, the controller and engines will be connected. By default, the JSON files
created by the controller are put into the IPYTHONDIR/profile_default/security
directory. If the engines share a filesystem with the controller, step 2 can be skipped as
the engines will automatically look at that location.

The final step required to use the running controller from a client is to move
the JSON file ipcontroller-client.json from host0 to any host where clients
will be run. If these file are put into the IPYTHONDIR/profile_default/security
directory of the client’s host, they will be found automatically. Otherwise, the full path
to them has to be passed to the client’s constructor.




Using ipcluster

The ipcluster command provides a simple way of starting a
controller and engines in the following situations:


	When the controller and engines are all run on localhost. This is useful
for testing or running on a multicore computer.


	When engines are started using the mpiexec command that comes
with most MPI [MPI] implementations


	When engines are started using the PBS [PBS] batch system
(or other qsub systems, such as SGE).


	When the controller is started on localhost and the engines are started on
remote nodes using ssh.


	When engines are started using the Windows HPC Server batch system.





Note

Currently ipcluster requires that the
IPYTHONDIR/profile_<name>/security directory live on a shared filesystem that is
seen by both the controller and engines. If you don’t have a shared file
system you will need to use ipcontroller and
ipengine directly.



Under the hood, ipcluster uses ipcontroller
and ipengine to perform the steps described above.

The simplest way to use ipcluster requires no configuration, and will
launch a controller and a number of engines on the local machine. For instance,
to start one controller and 4 engines on localhost:

$ ipcluster start -n 4





To see other command line options:

$ ipcluster -h








Configuring an IPython cluster

Cluster configurations are stored as profiles.  You can create a new profile with:

$ ipython profile create --parallel --profile=myprofile





This will create the directory IPYTHONDIR/profile_myprofile, and populate it
with the default configuration files for the three IPython cluster commands. Once
you edit those files, you can continue to call ipcluster/ipcontroller/ipengine
with no arguments beyond profile=myprofile, and any configuration will be maintained.

There is no limit to the number of profiles you can have, so you can maintain a profile for each
of your common use cases. The default profile will be used whenever the
profile argument is not specified, so edit IPYTHONDIR/profile_default/*_config.py to
represent your most common use case.

The configuration files are loaded with commented-out settings and explanations,
which should cover most of the available possibilities.


Using various batch systems with ipcluster

ipcluster has a notion of Launchers that can start controllers
and engines with various remote execution schemes.  Currently supported
models include ssh, mpiexec, PBS-style (Torque, SGE, LSF),
and Windows HPC Server.

In general, these are configured by the IPClusterEngines.engine_set_launcher_class,
and IPClusterStart.controller_launcher_class configurables, which can be the
fully specified object name (e.g. 'ipyparallel.apps.launcher.LocalControllerLauncher'),
but if you are using IPython’s builtin launchers, you can specify a launcher by its prefix e.g:

c.IPClusterEngines.engine_launcher_class = 'SSH'
# equivalent to
c.IPClusterEngines.engine_launcher_class = 'SSHEngineSetLauncher'
# both of which expand to
c.IPClusterEngines.engine_launcher_class = 'ipyparallel.apps.launcher.SSHEngineSetLauncher'





The shortest form being of particular use on the command line, where all you need to do to
get an IPython cluster running with engines started with MPI is:

$> ipcluster start --engines=MPI





Assuming that the default MPI config is sufficient.


Note

shortcuts for builtin launcher names were added in 0.12, as was the _class suffix
on the configurable names.  If you use the old 0.11 names (e.g. engine_set_launcher),
they will still work, but you will get a deprecation warning that the name has changed.




Note

The Launchers and configuration are designed in such a way that advanced
users can subclass and configure them to fit their own system that we
have not yet supported (such as Condor)






Using ipcluster in mpiexec/mpirun mode

The mpiexec/mpirun mode is useful if you:


	Have MPI installed.


	Your systems are configured to use the mpiexec or
mpirun commands to start MPI processes.




If these are satisfied, you can create a new profile:

$ ipython profile create --parallel --profile=mpi





and edit the file IPYTHONDIR/profile_mpi/ipcluster_config.py.

There, instruct ipcluster to use the MPI launchers by adding the lines:

c.IPClusterEngines.engine_launcher_class = 'MPIEngineSetLauncher'





If the default MPI configuration is correct, then you can now start your cluster, with:

$ ipcluster start -n 4 --profile=mpi





This does the following:


	Starts the IPython controller on current host.


	Uses mpiexec to start 4 engines.




If you have a reason to also start the Controller with mpi, you can specify:

c.IPClusterStart.controller_launcher_class = 'MPIControllerLauncher'






Note

The Controller will not be in the same MPI universe as the engines, so there is not
much reason to do this unless sysadmins demand it.



On newer MPI implementations (such as OpenMPI), this will work even if you
don’t make any calls to MPI or call MPI_Init(). However, older MPI
implementations require each process to call MPI_Init() upon
starting. The easiest way of having this done is to install the mpi4py
[mpi4py] package and then specify the c.MPI.use option in ipengine_config.py:

c.MPI.use = 'mpi4py'





Unfortunately, even this won’t work for some MPI implementations. If you are
having problems with this, you will likely have to use a custom Python
executable that itself calls MPI_Init() at the appropriate time.
Fortunately, mpi4py comes with such a custom Python executable that is easy to
install and use. However, this custom Python executable approach will not work
with ipcluster currently.

More details on using MPI with IPython can be found here.




Using ipcluster in PBS mode

The PBS mode uses the Portable Batch System (PBS) to start the engines.

As usual, we will start by creating a fresh profile:

$ ipython profile create --parallel --profile=pbs





And in ipcluster_config.py, we will select the PBS launchers for the controller
and engines:

c.IPClusterStart.controller_launcher_class = 'PBSControllerLauncher'
c.IPClusterEngines.engine_launcher_class = 'PBSEngineSetLauncher'






Note

Note that the configurable is IPClusterEngines for the engine launcher, and
IPClusterStart for the controller launcher. This is because the start command is a
subclass of the engine command, adding a controller launcher. Since it is a subclass,
any configuration made in IPClusterEngines is inherited by IPClusterStart unless it is
overridden.



IPython does provide simple default batch templates for PBS and SGE, but you may need
to specify your own. Here is a sample PBS script template:

#PBS -N ipython
#PBS -j oe
#PBS -l walltime=00:10:00
#PBS -l nodes={n//4}:ppn=4
#PBS -q {queue}

cd $PBS_O_WORKDIR
export PATH=$HOME/usr/local/bin
/usr/local/bin/mpiexec -n {n} ipengine --profile-dir={profile_dir}





There are a few important points about this template:


	This template will be rendered at runtime using IPython’s EvalFormatter.
This is a subclass of string.Formatter [https://docs.python.org/3/library/string.html#string.Formatter] that allows simple expressions
on keys.


	Instead of putting in the actual number of engines, use the notation
{n} to indicate the number of engines to be started. You can also use
expressions like {n//4} in the template to indicate the number of nodes.
There will always be {n} and {profile_dir} variables passed to the formatter.
These allow the batch system to know how many engines, and where the configuration
files reside. The same is true for the batch queue, with the template variable
{queue}.


	Any options to ipengine can be given in the batch script
template, or in ipengine_config.py.


	Depending on the configuration of you system, you may have to set
environment variables in the script template.




The controller template should be similar, but simpler:

#PBS -N ipython
#PBS -j oe
#PBS -l walltime=00:10:00
#PBS -l nodes=1:ppn=1
#PBS -q {queue}

cd $PBS_O_WORKDIR
export PATH=$HOME/usr/local/bin
ipcontroller --profile-dir={profile_dir}





Once you have created these scripts, save them with names like
pbs.engine.template. Now you can load them into the ipcluster_config with:

c.PBSEngineSetLauncher.batch_template_file = "pbs.engine.template"

c.PBSControllerLauncher.batch_template_file = "pbs.controller.template"





Alternately, you can define the templates as strings inside ipcluster_config.

Whether you are using your own templates or our defaults, the extra configurables available are
the number of engines to launch ({n}, and the batch system queue to which the jobs are to be
submitted ({queue})). These are configurables, and can be specified in
ipcluster_config:

c.PBSLauncher.queue = 'veryshort.q'
c.IPClusterEngines.n = 64





Note that assuming you are running PBS on a multi-node cluster, the Controller’s default behavior
of listening only on localhost is likely too restrictive.  In this case, also assuming the
nodes are safely behind a firewall, you can instruct the Controller to listen for
connections on all its interfaces, by adding in ipcontroller_config:

c.HubFactory.ip = '*'





You can now run the cluster with:

$ ipcluster start --profile=pbs -n 128





Additional configuration options can be found in the PBS section of ipcluster_config.


Note

Due to the flexibility of configuration, the PBS launchers work with simple changes
to the template for other qsub-using systems, such as Sun Grid Engine,
and with further configuration in similar batch systems like Condor.






Using ipcluster in SSH mode

The SSH mode uses ssh to execute ipengine on remote
nodes and ipcontroller can be run remotely as well, or on localhost.


Note

When using this mode it highly recommended that you have set up SSH keys
and are using ssh-agent [SSH] for password-less logins.



As usual, we start by creating a clean profile:

$ ipython profile create --parallel --profile=ssh





To use this mode, select the SSH launchers in ipcluster_config.py:

c.IPClusterEngines.engine_launcher_class = 'SSHEngineSetLauncher'
# and if the Controller is also to be remote:
c.IPClusterStart.controller_launcher_class = 'SSHControllerLauncher'





The controller’s remote location and configuration can be specified:

# Set the user and hostname for the controller
# c.SSHControllerLauncher.hostname = 'controller.example.com'
# c.SSHControllerLauncher.user = os.environ.get('USER','username')

# Set the arguments to be passed to ipcontroller
# note that remotely launched ipcontroller will not get the contents of
# the local ipcontroller_config.py unless it resides on the *remote host*
# in the location specified by the `profile-dir` argument.
# c.SSHControllerLauncher.controller_args = ['--reuse', '--ip=*', '--profile-dir=/path/to/cd']





Engines are specified in a dictionary, by hostname and the number of engines to be run
on that host.

c.SSHEngineSetLauncher.engines = { 'host1.example.com' : 2,
            'host2.example.com' : 5,
            'host3.example.com' : (1, ['--profile-dir=/home/different/location']),
            'host4.example.com' : {'n': 3, 'engine_args': ['--profile-dir=/away/location'], 'engine_cmd': ['/home/venv/bin/python', '-m', 'ipyparallel.engine']},
            'host5.example.com' : 8 }






	The engines dict, where the keys are the host we want to run engines on and
the value is the number of engines to run on that host.


	on host3, the value is a tuple, where the number of engines is first, and the arguments
to be passed to ipengine are the second element.


	on host4, a dictionary configures the engine. The dictionary can be used to specify
the number of engines to be run on that host n, the engine arguments engine_args,
as well as the engine command itself engine_cmd. This is particularly useful for
virtual environments on heterogeneous clusters where the location of the python
executable might vary from host to host.




For engines without explicitly specified arguments, the default arguments are set in
a single location:

c.SSHEngineSetLauncher.engine_args = ['--profile-dir=/path/to/profile_ssh']





Current limitations of the SSH mode of ipcluster are:


	Untested and unsupported on Windows.  Would require a working ssh on Windows.
Also, we are using shell scripts to setup and execute commands on remote hosts.





Moving files with SSH

SSH launchers will try to move connection files, controlled by the to_send and
to_fetch configurables.  If your machines are on a shared filesystem, this step is
unnecessary, and can be skipped by setting these to empty lists:

c.SSHLauncher.to_send = []
c.SSHLauncher.to_fetch = []





If our default guesses about paths don’t work for you, or other files
should be moved, you can manually specify these lists as tuples of (local_path,
remote_path) for to_send, and (remote_path, local_path) for to_fetch.  If you do
specify these lists explicitly, IPython will not automatically send connection files,
so you must include this yourself if they should still be sent/retrieved.








IPython on EC2 with StarCluster

The excellent StarCluster [http://star.mit.edu/cluster] toolkit for managing Amazon EC2 [http://aws.amazon.com/ec2/] clusters has a plugin
which makes deploying IPython on EC2 quite simple.  The starcluster plugin uses
ipcluster with the SGE launchers to distribute engines across the
EC2 cluster.  See their ipcluster plugin documentation [http://star.mit.edu/cluster/docs/latest/plugins/ipython.html] for more information.




Using the ipcontroller and ipengine commands

It is also possible to use the ipcontroller and ipengine
commands to start your controller and engines. This approach gives you full
control over all aspects of the startup process.


Starting the controller and engine on your local machine

To use ipcontroller and ipengine to start things on your
local machine, do the following.

First start the controller:

$ ipcontroller





Next, start however many instances of the engine you want using (repeatedly)
the command:

$ ipengine





The engines should start and automatically connect to the controller using the
JSON files in IPYTHONDIR/profile_default/security. You are now ready to use the
controller and engines from IPython.


Warning

The order of the above operations may be important.  You must
start the controller before the engines, unless you are reusing connection
information (via --reuse), in which case ordering is not important.




Note

On some platforms (OS X), to put the controller and engine into the
background you may need to give these commands in the form (ipcontroller
&) and (ipengine &) (with the parentheses) for them to work
properly.






Starting the controller and engines on different hosts

When the controller and engines are running on different hosts, things are
slightly more complicated, but the underlying ideas are the same:


	Start the controller on a host using ipcontroller. The controller must be
instructed to listen on an interface visible to the engine machines, via the ip
command-line argument or HubFactory.ip in ipcontroller_config.py:

$ ipcontroller --ip=192.168.1.16





# in ipcontroller_config.py
HubFactory.ip = '192.168.1.16'







	Copy ipcontroller-engine.json from IPYTHONDIR/profile_<name>/security on
the controller’s host to the host where the engines will run.


	Use ipengine on the engine’s hosts to start the engines.




The only thing you have to be careful of is to tell ipengine where
the ipcontroller-engine.json file is located. There are two ways you
can do this:


	Put ipcontroller-engine.json in the IPYTHONDIR/profile_<name>/security
directory on the engine’s host, where it will be found automatically.


	Call ipengine with the --file=full_path_to_the_file
flag.




The file flag works like this:

$ ipengine --file=/path/to/my/ipcontroller-engine.json






Note

If the controller’s and engine’s hosts all have a shared file system
(IPYTHONDIR/profile_<name>/security is the same on all of them),
then no paths need to be specified or files copied.




SSH Tunnels

If your engines are not on the same LAN as the controller, or you are on a highly
restricted network where your nodes cannot see each others ports, then you can
use SSH tunnels to connect engines to the controller.


Note

This does not work in all cases.  Manual tunnels may be an option, but are
highly inconvenient. Support for manual tunnels will be improved.



You can instruct all engines to use ssh, by specifying the ssh server in
ipcontroller-engine.json:

{
  "url":"tcp://192.168.1.123:56951",
  "exec_key":"26f4c040-587d-4a4e-b58b-030b96399584",
  "ssh":"user@example.com",
  "location":"192.168.1.123"
}





This will be specified if you give the --enginessh=use@example.com argument when
starting ipcontroller.

Or you can specify an ssh server on the command-line when starting an engine:

$> ipengine --profile=foo --ssh=my.login.node





For example, if your system is totally restricted, then all connections will be
loopback, and ssh tunnels will be used to connect engines to the controller:

[node1] $> ipcontroller --enginessh=node1
[node2] $> ipengine
[node3] $> ipcluster engines --n=4





Or if you want to start many engines on each node, the command ipcluster engines –n=4
without any configuration is equivalent to running ipengine 4 times.






An example using ipcontroller/engine with ssh

No configuration files are necessary to use ipcontroller/engine in an SSH environment
without a shared filesystem. You need to make sure that the controller is listening
on an interface visible to the engines, and move the connection file from the controller to
the engines.


	start the controller, listening on an ip-address visible to the engine machines:

[controller.host] $ ipcontroller --ip=192.168.1.16

[IPControllerApp] Using existing profile dir: u'/Users/me/.ipython/profile_default'
[IPControllerApp] Hub listening on tcp://192.168.1.16:63320 for registration.
[IPControllerApp] Hub using DB backend: 'ipyparallel.controller.dictdb.DictDB'
[IPControllerApp] hub::created hub
[IPControllerApp] writing connection info to /Users/me/.ipython/profile_default/security/ipcontroller-client.json
[IPControllerApp] writing connection info to /Users/me/.ipython/profile_default/security/ipcontroller-engine.json
[IPControllerApp] task::using Python leastload Task scheduler
[IPControllerApp] Heartmonitor started
[IPControllerApp] Creating pid file: /Users/me/.ipython/profile_default/pid/ipcontroller.pid
Scheduler started [leastload]







	on each engine, fetch the connection file with scp:

[engine.host.n] $ scp controller.host:.ipython/profile_default/security/ipcontroller-engine.json ./






Note

The log output of ipcontroller above shows you where the json files were written.
They will be in ~/.ipython under
profile_default/security/ipcontroller-engine.json





	start the engines, using the connection file:

[engine.host.n] $ ipengine --file=./ipcontroller-engine.json









A couple of notes:


	You can avoid having to fetch the connection file every time by adding --reuse flag
to ipcontroller, which instructs the controller to read the previous connection file for
connection info, rather than generate a new one with randomized ports.


	In step 2, if you fetch the connection file directly into the security dir of a profile,
then you need not specify its path directly, only the profile (assumes the path exists,
otherwise you must create it first):

[engine.host.n] $ scp controller.host:.ipython/profile_default/security/ipcontroller-engine.json ~/.ipython/profile_ssh/security/
[engine.host.n] $ ipengine --profile=ssh





Of course, if you fetch the file into the default profile, no arguments must be passed to
ipengine at all.



	Note that ipengine did not specify the ip argument. In general, it is unlikely for any
connection information to be specified at the command-line to ipengine, as all of this
information should be contained in the connection file written by ipcontroller.







Make JSON files persistent

At fist glance it may seem that that managing the JSON files is a bit
annoying. Going back to the house and key analogy, copying the JSON around
each time you start the controller is like having to make a new key every time
you want to unlock the door and enter your house. As with your house, you want
to be able to create the key (or JSON file) once, and then use it at
any point in the future.

To do this, the only thing you have to do is specify the –reuse flag, so that
the connection information in the JSON files remains accurate:

$ ipcontroller --reuse





Then copy the JSON files over the first time and you are set. You can
start and stop the controller and engines any many times as you want in the
future, as long as you make sure to tell the controller to reuse the file.


Note

You may ask the question: what ports does the controller listen on if you
don’t tell is to use specific ones? The default is to use high random port
numbers. We do this for two reasons: i) to increase security through
obscurity and ii) to multiple controllers on a given host to start and
automatically use different ports.






Log files

All of the components of IPython have log files associated with them.
These log files can be extremely useful in debugging problems with
IPython and can be found in the directory IPYTHONDIR/profile_<name>/log.
Sending the log files to us will often help us to debug any problems.




Configuring ipcontroller

The IPython Controller takes its configuration from the file ipcontroller_config.py
in the active profile directory.


Ports and addresses

In many cases, you will want to configure the Controller’s network identity.  By default,
the Controller listens only on loopback, which is the most secure but often impractical.
To instruct the controller to listen on a specific interface, you can set the
HubFactory.ip trait.  To listen on all interfaces, specify:

c.HubFactory.ip = '*'





When connecting to a Controller that is listening on loopback or behind a firewall, it may
be necessary to specify an SSH server to use for tunnels, and the external IP of the
Controller. If you specified that the HubFactory listen on loopback, or all interfaces,
then IPython will try to guess the external IP. If you are on a system with VM network
devices, or many interfaces, this guess may be incorrect. In these cases, you will want
to specify the ‘location’ of the Controller. This is the IP of the machine the Controller
is on, as seen by the clients, engines, or the SSH server used to tunnel connections.

For example, to set up a cluster with a Controller on a work node, using ssh tunnels
through the login node, an example ipcontroller_config.py might contain:

# allow connections on all interfaces from engines
# engines on the same node will use loopback, while engines
# from other nodes will use an external IP
c.HubFactory.ip = '*'

# you typically only need to specify the location when there are extra
# interfaces that may not be visible to peer nodes (e.g. VM interfaces)
c.HubFactory.location = '10.0.1.5'
# or to get an automatic value, try this:
import socket
hostname = socket.gethostname()
# alternate choices for hostname include `socket.getfqdn()`
# or `socket.gethostname() + '.local'`

ex_ip = socket.gethostbyname_ex(hostname)[-1][-1]
c.HubFactory.location = ex_ip

# now instruct clients to use the login node for SSH tunnels:
c.HubFactory.ssh_server = 'login.mycluster.net'





After doing this, your ipcontroller-client.json file will look something like this:

{
  "url":"tcp:\/\/*:43447",
  "exec_key":"9c7779e4-d08a-4c3b-ba8e-db1f80b562c1",
  "ssh":"login.mycluster.net",
  "location":"10.0.1.5"
}





Then this file will be all you need for a client to connect to the controller, tunneling
SSH connections through login.mycluster.net.




Database Backend

The Hub stores all messages and results passed between Clients and Engines.
For large and/or long-running clusters, it would be unreasonable to keep all
of this information in memory. For this reason, we have two database backends:
[MongoDB] via PyMongo [http://api.mongodb.org/python/1.9/], and SQLite with the stdlib sqlite.

MongoDB is our design target, and the dict-like model it uses has driven our design. As far
as we are concerned, BSON can be considered essentially the same as JSON, adding support
for binary data and datetime objects, and any new database backend must support the same
data types.


See also

MongoDB BSON doc [http://bsonspec.org/]



To use one of these backends, you must set the HubFactory.db_class trait:

# for a simple dict-based in-memory implementation, use dictdb
# This is the default and the fastest, since it doesn't involve the filesystem
c.HubFactory.db_class = 'ipyparallel.controller.dictdb.DictDB'

# To use MongoDB:
c.HubFactory.db_class = 'ipyparallel.controller.mongodb.MongoDB'

# and SQLite:
c.HubFactory.db_class = 'ipyparallel.controller.sqlitedb.SQLiteDB'

# You can use NoDB to disable the database altogether, in case you don't need
# to reuse tasks or results, and want to keep memory consumption under control.
c.HubFactory.db_class = 'ipyparallel.controller.dictdb.NoDB'





When using the proper databases, you can allow for tasks to persist from
one session to the next by specifying the MongoDB database or SQLite table in
which tasks are to be stored.  The default is to use a table named for the Hub’s Session,
which is a UUID, and thus different every time.

# To keep persistent task history in MongoDB:
c.MongoDB.database = 'tasks'

# and in SQLite:
c.SQLiteDB.table = 'tasks'





Since MongoDB servers can be running remotely or configured to listen on a particular port,
you can specify any arguments you may need to the PyMongo Connection [http://api.mongodb.org/python/1.9/api/pymongo/connection.html#pymongo.connection.Connection]:

# positional args to pymongo.Connection
c.MongoDB.connection_args = []

# keyword args to pymongo.Connection
c.MongoDB.connection_kwargs = {}





But sometimes you are moving lots of data around quickly, and you don’t need
that information to be stored for later access, even by other Clients to this
same session. For this case, we have a dummy database, which doesn’t
store anything. This lets the Hub stay small in memory, at the obvious expense
of being able to access the information that would have been stored in the
database (used for task resubmission, requesting results of tasks you didn’t
submit, etc.). To use this backend, pass --nodb to
ipcontroller on the command-line, or specify the NoDB class
in your ipcontroller_config.py as described above.


See also

For more information on the database backends, see the db backend reference.








Configuring ipengine

The IPython Engine takes its configuration from the file ipengine_config.py

The Engine itself also has some amount of configuration. Most of this
has to do with initializing MPI or connecting to the controller.

To instruct the Engine to initialize with an MPI environment set up by
mpi4py, add:

c.MPI.use = 'mpi4py'





In this case, the Engine will use our default mpi4py init script to set up
the MPI environment prior to execution.  We have default init scripts for
mpi4py and pytrilinos.  If you want to specify your own code to be run
at the beginning, specify c.MPI.init_script.

You can also specify a file or python command to be run at startup of the
Engine:

c.IPEngineApp.startup_script = u'/path/to/my/startup.py'

c.IPEngineApp.startup_command = 'import numpy, scipy, mpi4py'





These commands/files will be run again, after each

It’s also useful on systems with shared filesystems to run the engines
in some scratch directory.  This can be set with:

c.IPEngineApp.work_dir = u'/path/to/scratch/'






	MongoDB

	MongoDB database https://www.mongodb.org/



	PBS

	Portable Batch System http://www.mcs.anl.gov/research/projects/openpbs/



	SSH

	SSH-Agent https://en.wikipedia.org/wiki/Ssh-agent













          

      

      

    

  

    
      
          
            
  
IPython’s Direct interface

The direct interface represents one possible way of working with a set of
IPython engines. The basic idea behind the direct interface is that the
capabilities of each engine are directly and explicitly exposed to the user.
Thus, in the direct interface, each engine is given an id that is used to
identify the engine and give it work to do. This interface is very intuitive
and is designed with interactive usage in mind, and is the best place for
new users of IPython to begin.


Starting the IPython controller and engines

To follow along with this tutorial, you will need to start the IPython
controller and four IPython engines. The simplest way of doing this is to use
the ipcluster command:

$ ipcluster start -n 4





For more detailed information about starting the controller and engines, see
our introduction to using IPython for parallel computing.




Creating a DirectView

The first step is to import the IPython ipyparallel
module and create a Client:

In [1]: import ipyparallel as ipp
In [2]: rc = ipp.Client()





This form assumes that the default connection information (stored in
ipcontroller-client.json, found in IPYTHONDIR/profile_default/security) is
accurate. If the controller was started on a remote machine, you must copy that connection
file to the client machine, or enter its contents as arguments to the Client constructor:

# If you have copied the json connector file from the controller:
In [2]: rc = ipp.Client('/path/to/ipcontroller-client.json')
# or to connect with a specific profile you have set up:
In [3]: rc = ipp.Client(profile='mpi')





To make sure there are engines connected to the controller, users can get a list
of engine ids:

In [3]: rc.ids
Out[3]: [0, 1, 2, 3]





Here we see that there are four engines ready to do work for us.

For direct execution, we will make use of a DirectView object, which can be
constructed via list-access to the client:

In [4]: dview = rc[:] # use all engines






See also

For more information, see the in-depth explanation of Views.






Quick and easy parallelism

In many cases, you want to call a Python function on a sequence of
objects, but in parallel. IPython Parallel provides a simple way
of accomplishing this: using the DirectView’s map() method.


Parallel map

Python’s builtin map() [https://docs.python.org/3/library/functions.html#map] functions allows a function to be applied to a
sequence element-by-element. This type of code is typically trivial to
parallelize. In fact, since IPython’s interface is all about functions anyway,
you can use the builtin map() [https://docs.python.org/3/library/functions.html#map] with a RemoteFunction, or a
DirectView’s map() method:

In [62]: serial_result = list(map(lambda x:x**10, range(32)))

In [63]: parallel_result = dview.map_sync(lambda x: x**10, range(32))

In [64]: serial_result == parallel_result
Out[64]: True






Note

The DirectView’s version of map() does
not do dynamic load balancing. For a load balanced version, use a
LoadBalancedView.




See also

map() is implemented via ParallelFunction.








Calling Python functions

The most basic type of operation that can be performed on the engines is to
execute Python code or call Python functions. Executing Python code can be
done in blocking or non-blocking mode (non-blocking is default) using the
View.execute() method, and calling functions can be done via the
View.apply() method.


apply

The main method for doing remote execution (in fact, all methods that
communicate with the engines are built on top of it), is View.apply().

We strive to provide the cleanest interface we can, so apply has the following
signature:

view.apply(f, *args, **kwargs)





There are some controls to influence the behavior of apply, called flags.
Views store the default values for these flags as attributes.
The DirectView has these flags:


	dv.blockbool, default: False

	whether to wait for the result, or return an AsyncResult object
immediately



	dv.trackbool, default: False

	whether to instruct pyzmq to track when zeromq is done sending the message.
This is primarily useful for non-copying sends of numpy arrays that you plan to
edit in-place.  You need to know when it becomes safe to edit the buffer
without corrupting the message.
There is a performance cost to enabling tracking,
so it is not recommended except for sending very large messages.



	dv.targetsint, list of ints

	The engines associated with this View.





Creating a view is simple: index-access on a client creates a DirectView.

In [4]: view = rc[1:3]
Out[4]: <DirectView [1, 2]>

In [5]: view.apply<tab>
view.apply  view.apply_async  view.apply_sync





For convenience, you specify blocking behavior explicitly for a single call with the extra sync/async methods.




Blocking execution

In blocking mode, the DirectView object (called dview in
these examples) submits the command to the controller, which places the
command in the engines’ queues for execution. The apply() call then
blocks until the engines are done executing the command:

In [2]: dview = rc[:] # A DirectView of all engines
In [3]: dview.block=True
In [4]: dview['a'] = 5

In [5]: dview['b'] = 10

In [6]: dview.apply(lambda x: a+b+x, 27)
Out[6]: [42, 42, 42, 42]





You can also select blocking execution on a call-by-call basis with the apply_sync()
method:

In [7]: dview.block=False

In [8]: dview.apply_sync(lambda x: a+b+x, 27)
Out[8]: [42, 42, 42, 42]





Python commands can be executed as strings on specific engines by using a View’s execute
method:

In [6]: rc[::2].execute('c=a+b')

In [7]: rc[1::2].execute('c=a-b')

In [8]: dview['c'] # shorthand for dview.pull('c', block=True)
Out[8]: [15, -5, 15, -5]








Non-blocking execution

In non-blocking mode, apply() submits the command to be executed and
then returns a AsyncResult object immediately. The
AsyncResult object gives you a way of getting a result at a later
time through its get() method.


See also

Docs on the AsyncResult object.



This allows you to quickly submit long running commands without blocking your
local IPython session:

# define our function
In [6]: def wait(t):
  ....:     import time
  ....:     tic = time.time()
  ....:     time.sleep(t)
  ....:     return time.time()-tic

# In non-blocking mode
In [7]: ar = dview.apply_async(wait, 2)

# Now block for the result
In [8]: ar.get()
Out[8]: [2.0006198883056641, 1.9997570514678955, 1.9996809959411621, 2.0003249645233154]

# Again in non-blocking mode
In [9]: ar = dview.apply_async(wait, 10)

# Poll to see if the result is ready
In [10]: ar.ready()
Out[10]: False

# ask for the result, but wait a maximum of 1 second:
In [45]: ar.get(1)
---------------------------------------------------------------------------
TimeoutError                              Traceback (most recent call last)
/home/you/<ipython-input-45-7cd858bbb8e0> in <module>()
----> 1 ar.get(1)

/path/to/site-packages/IPython/parallel/asyncresult.pyc in get(self, timeout)
     62                 raise self._exception
     63         else:
---> 64             raise error.TimeoutError("Result not ready.")
     65
     66     def ready(self):

TimeoutError: Result not ready.






Note

Note the import inside the function. This is a common model, to ensure
that the appropriate modules are imported where the task is run. You can
also manually import modules into the engine(s) namespace(s) via
view.execute('import numpy').



Often, it is desirable to wait until a set of AsyncResult objects
are done. For this, there is a the method wait(). This method takes a
collection of AsyncResult objects (or msg_ids or integer indices to the client’s history),
and blocks until all of the associated results are ready:

In [72]: dview.block=False

# A trivial list of AsyncResults objects
In [73]: pr_list = [dview.apply_async(wait, 3) for i in range(10)]

# Wait until all of them are done
In [74]: dview.wait(pr_list)

# Then, their results are ready using get()
In [75]: pr_list[0].get()
Out[75]: [2.9982571601867676, 2.9982588291168213, 2.9987530708312988, 2.9990990161895752]








The block and targets keyword arguments and attributes

Most DirectView methods (excluding apply()) accept block and
targets as keyword arguments. As we have seen above, these keyword arguments control the
blocking mode and which engines the command is applied to. The View class also has
block and targets attributes that control the default behavior when the keyword
arguments are not provided. Thus the following logic is used for block and targets:


	If no keyword argument is provided, the instance attributes are used.


	The Keyword arguments, if provided overrides the instance attributes for
the duration of a single call.




The following examples demonstrate how to use the instance attributes:

In [16]: dview.targets = [0,2]

In [17]: dview.block = False

In [18]: ar = dview.apply(lambda : 10)

In [19]: ar.get()
Out[19]: [10, 10]

In [20]: dview.targets = rc.ids # all engines (4)

In [21]: dview.block = True

In [22]: dview.apply(lambda : 42)
Out[22]: [42, 42, 42, 42]





The block and targets instance attributes of the
DirectView also determine the behavior of the parallel magic commands.


See also

See the documentation of the Parallel Magics.








Moving Python objects around

In addition to calling functions and executing code on engines, you can
transfer Python objects between your IPython session and the engines. In
IPython, these operations are called push() (sending an object to the
engines) and pull() (getting an object from the engines).


Basic push and pull

Here are some examples of how you use push() and pull():

In [38]: dview.push(dict(a=1.03234, b=3453))
Out[38]: [None, None, None, None]

In [39]: dview.pull('a')
Out[39]: [ 1.03234, 1.03234, 1.03234, 1.03234]

In [40]: dview.pull('b', targets=0)
Out[40]: 3453

In [41]: dview.pull(('a', 'b'))
Out[41]: [ [1.03234, 3453], [1.03234, 3453], [1.03234, 3453], [1.03234, 3453] ]

In [42]: dview.push(dict(c='speed'))
Out[42]: [None, None, None, None]





In non-blocking mode push() and pull() also return
AsyncResult objects:

In [48]: ar = dview.pull('a', block=False)

In [49]: ar.get()
Out[49]: [1.03234, 1.03234, 1.03234, 1.03234]








Dictionary interface

Since a Python namespace is a dict [https://docs.python.org/3/library/stdtypes.html#dict], DirectView objects provide
dictionary-style access by key and methods such as get() and
update() for convenience. This make the remote namespaces of the engines
appear as a local dictionary. Underneath, these methods call apply():

In [51]: dview['a'] = ['foo', 'bar']

In [52]: dview['a']
Out[52]: [ ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'] ]








Scatter and gather

Sometimes it is useful to partition a sequence and push the partitions to
different engines. In MPI language, this is know as scatter/gather and we
follow that terminology. However, it is important to remember that in
IPython’s Client class, scatter() is from the
interactive IPython session to the engines and gather() is from the
engines back to the interactive IPython session. For scatter/gather operations
between engines, MPI, pyzmq, or some other direct interconnect should be used.

In [58]: dview.scatter('a',range(16))
Out[58]: [None,None,None,None]

In [59]: dview['a']
Out[59]: [ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]

In [60]: dview.gather('a') # This will show you the status of gather.
Out[60]: <AsyncMapResult: gather:finished>
In [61]: dview.gather('a').get() # This will give you the result.
Out[61]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
In [62]: dview.gather('a')[3] # You can also direct call the result.
Out[62]: [2]










Other things to look at


Remote function decorators

Remote functions are like normal functions, but when they are called
they execute on one or more engines rather than locally. IPython provides
two decorators for producing parallel functions.

The first is @remote, which calls the function on every engine of a view.

In [10]: @dview.remote(block=True)
   ....: def getpid():
   ....:     import os
   ....:     return os.getpid()
   ....:

In [11]: getpid()
Out[11]: [12345, 12346, 12347, 12348]





The @parallel decorator creates parallel functions, that break up an element-wise
operations and distribute them, reconstructing the result.

In [12]: import numpy as np

In [13]: A = np.random.random((64,48))

In [14]: @dview.parallel(block=True)
   ....: def pmul(A,B):
   ....:     return A*B

In [15]: C_local = A*A

In [16]: C_remote = pmul(A,A)

In [17]: (C_local == C_remote).all()
Out[17]: True





Calling a @parallel function does not correspond to map. It is used for splitting
element-wise operations that operate on a sequence or array.  For map behavior,
parallel functions have a map method.








	call

	pfunc(seq)

	pfunc.map(seq)





	# of tasks

	# of engines (1 per engine)

	# of engines (1 per engine)



	# of remote calls

	# of engines (1 per engine)

	len(seq)



	argument to remote

	seq[i:j] (sub-sequence)

	seq[i] (single element)






A quick example to illustrate the difference in arguments for the two modes:

In [16]: @dview.parallel(block=True)
   ....: def echo(x):
   ....:     return str(x)

In [17]: echo(range(5))
Out[17]: ['[0, 1]', '[2]', '[3]', '[4]']

In [18]: echo.map(range(5))
Out[18]: ['0', '1', '2', '3', '4']






See also

See the parallel() and remote()
decorators for options.






How to do parallel list comprehensions

In many cases list comprehensions are nicer than using the map function. While
we don’t have fully parallel list comprehensions, it is simple to get the
basic effect using scatter() and gather():

In [66]: dview.scatter('x',range(64))

In [67]: %px y = [i**10 for i in x]
Parallel execution on engines: [0, 1, 2, 3]

In [68]: y = dview.gather('y')

In [69]: print y
[0, 1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824,...]








Remote imports

Sometimes you may want to import packages both in your interactive session
and on your remote engines.  This can be done with the context manager
created by a DirectView’s sync_imports() method:

In [69]: with dview.sync_imports():
   ....:     import numpy
importing numpy on engine(s)





Any imports made inside the block will also be performed on the view’s engines.
sync_imports also takes a local boolean flag that defaults to True, which specifies
whether the local imports should also be performed.  However, support for local=False
has not been implemented, so only packages that can be imported locally will work
this way. Note that the usual renaming of the import handle in the same line like in
import matplotlib.pyplot as plt does not work on the remote engine, the as plt is
ignored remotely, while it executes locally. One could rename the remote handle with
%px plt = pyplot though after the import.

You can also specify imports via the @ipp.require decorator.  This is a decorator
designed for use in dependencies, but can be used to handle remote imports as well.
Modules or module names passed to @ipp.require will be imported before the decorated
function is called.  If they cannot be imported, the decorated function will never
execute and will fail with an UnmetDependencyError. Failures of single Engines will
be collected and raise a CompositeError, as demonstrated in the next section.

In [70]: @ipp.require('re')
   ....: def findall(pat, x):
   ....:     # re is guaranteed to be available
   ....:     return re.findall(pat, x)

# you can also pass modules themselves, that you already have locally:
In [71]: @ipp.require(time)
   ....: def wait(t):
   ....:     time.sleep(t)
   ....:     return t






Note

sync_imports() does not allow import foo as bar syntax,
because the assignment represented by the as bar part is not
available to the import hook.






Parallel exceptions

Parallel commands can raise Python exceptions,
just like serial commands. This is complicated by the fact that a single
parallel command can raise multiple exceptions (one for each engine
the command was run on). To express this idea, we have a
CompositeError exception class that will be raised when there are mulitple errors. The
CompositeError class is a special type of exception that wraps one or
more other exceptions. Here is how it works:

In [78]: dview.block = True

In [79]: dview.execute("1/0")
[0:execute]:
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
----> 1 1/0
ZeroDivisionError: integer division or modulo by zero

[1:execute]:
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
----> 1 1/0
ZeroDivisionError: integer division or modulo by zero

[2:execute]:
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
----> 1 1/0
ZeroDivisionError: integer division or modulo by zero

[3:execute]:
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
----> 1 1/0
ZeroDivisionError: integer division or modulo by zero





Notice how the error message printed when CompositeError is raised has
information about the individual exceptions that were raised on each engine.
If you want, you can even raise one of these original exceptions:

In [80]: try:
   ....:     dview.execute('1/0', block=True)
   ....: except ipp.CompositeError as e:
   ....:     e.raise_exception()
   ....:
   ....:
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
----> 1 1/0
ZeroDivisionError: integer division or modulo by zero





If you are working in IPython, you can type %debug after one of
these CompositeError exceptions is raised and inspect the exception:

In [81]: dview.execute('1/0')
[0:execute]:
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
----> 1 1/0
ZeroDivisionError: integer division or modulo by zero

[1:execute]:
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
----> 1 1/0
ZeroDivisionError: integer division or modulo by zero

[2:execute]:
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
----> 1 1/0
ZeroDivisionError: integer division or modulo by zero

[3:execute]:
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
----> 1 1/0
ZeroDivisionError: integer division or modulo by zero

In [82]: %debug
> /.../site-packages/IPython/parallel/client/asyncresult.py(125)get()
    124             else:
--> 125                 raise self._exception
    126         else:

# Here, self._exception is the CompositeError instance:

ipdb> e = self._exception
ipdb> e
CompositeError(4)

# we can tab-complete on e to see available methods:
ipdb> e.<TAB>
e.args               e.message            e.traceback
e.elist              e.msg
e.ename              e.print_traceback
e.engine_info        e.raise_exception
e.evalue             e.render_traceback

# We can then display the individual tracebacks, if we want:
ipdb> e.print_traceback(1)
[1:execute]:
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
----> 1 1/0
ZeroDivisionError: integer division or modulo by zero





If you have 100 engines, you probably don’t want to see 100 identical tracebacks
for a NameError because of a small typo.
For this reason, CompositeError truncates the list of exceptions it will print
to CompositeError.tb_limit (default is five).
You can change this limit to suit your needs with:

In [21]: ipp.CompositeError.tb_limit = 1
In [22]: %px x=z
[0:execute]:
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
----> 1 x=z
NameError: name 'z' is not defined

... 3 more exceptions ...





All of this same error handling magic works the same in non-blocking mode:

In [83]: dview.block=False

In [84]: ar = dview.execute('1/0')

In [85]: ar.get()
[0:execute]:
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
----> 1 1/0
ZeroDivisionError: integer division or modulo by zero

... 3 more exceptions ...













          

      

      

    

  

    
      
          
            
  
Parallel Magic Commands

We provide a few IPython magic commands
that make it a bit more pleasant to execute Python commands on the engines interactively.
These are mainly shortcuts to DirectView.execute()
and AsyncResult.display_outputs() methods respectively.

These magics will automatically become available when you create a Client:

In [1]: import ipyparallel as ipp
In [2]: rc = ipp.Client()





The initially active View will have attributes targets='all', block=True,
which is a blocking view of all engines, evaluated at request time
(adding/removing engines will change where this view’s tasks will run).


The Magics


%px

The %px magic executes a single Python command on the engines
specified by the targets attribute of the DirectView instance:

# import numpy here and everywhere
In [25]: with rc[:].sync_imports():
   ....:    import numpy
importing numpy on engine(s)

In [27]: %px a = numpy.random.rand(2,2)
Parallel execution on engines: [0, 1, 2, 3]

In [28]: %px numpy.linalg.eigvals(a)
Parallel execution on engines: [0, 1, 2, 3]
Out [0:68]: array([ 0.77120707, -0.19448286])
Out [1:68]: array([ 1.10815921,  0.05110369])
Out [2:68]: array([ 0.74625527, -0.37475081])
Out [3:68]: array([ 0.72931905,  0.07159743])

In [29]: %px print 'hi'
Parallel execution on engine(s): all
[stdout:0] hi
[stdout:1] hi
[stdout:2] hi
[stdout:3] hi





Since engines are IPython as well, you can even run magics remotely:

In [28]: %px %pylab inline
Parallel execution on engine(s): all
[stdout:0]
Populating the interactive namespace from numpy and matplotlib
[stdout:1]
Populating the interactive namespace from numpy and matplotlib
[stdout:2]
Populating the interactive namespace from numpy and matplotlib
[stdout:3]
Populating the interactive namespace from numpy and matplotlib





And once in pylab mode with the inline backend,
you can make plots and they will be displayed in your frontend
if it supports the inline figures (e.g. notebook or qtconsole):

In [40]: %px plot(rand(100))
Parallel execution on engine(s): all
<plot0>
<plot1>
<plot2>
<plot3>
Out[0:79]: [<matplotlib.lines.Line2D at 0x10a6286d0>]
Out[1:79]: [<matplotlib.lines.Line2D at 0x10b9476d0>]
Out[2:79]: [<matplotlib.lines.Line2D at 0x110652750>]
Out[3:79]: [<matplotlib.lines.Line2D at 0x10c6566d0>]








%%px Cell Magic

%%px can be used as a Cell Magic, which accepts some arguments for controlling
the execution.


Targets and Blocking

%%px accepts --targets for controlling which engines on which to run,
and --[no]block for specifying the blocking behavior of this cell,
independent of the defaults for the View.

In [6]: %%px --targets ::2
   ...: print "I am even"
   ...:
Parallel execution on engine(s): [0, 2]
[stdout:0] I am even
[stdout:2] I am even

In [7]: %%px --targets 1
   ...: print "I am number 1"
   ...:
Parallel execution on engine(s): 1
I am number 1

In [8]: %%px
   ...: print "still 'all' by default"
   ...:
Parallel execution on engine(s): all
[stdout:0] still 'all' by default
[stdout:1] still 'all' by default
[stdout:2] still 'all' by default
[stdout:3] still 'all' by default

In [9]: %%px --noblock
   ...: import time
   ...: time.sleep(1)
   ...: time.time()
   ...:
Async parallel execution on engine(s): all
Out[9]: <AsyncResult: execute>

In [10]: %pxresult
Out[0:12]: 1339454561.069116
Out[1:10]: 1339454561.076752
Out[2:12]: 1339454561.072837
Out[3:10]: 1339454561.066665






See also

%pxconfig accepts these same arguments for changing the default
values of targets/blocking for the active View.






Output Display

%%px also accepts a --group-outputs argument,
which adjusts how the outputs of multiple engines are presented.


See also

AsyncResult.display_outputs() for the grouping options.



In [50]: %%px --block --group-outputs=engine
   ....: import numpy as np
   ....: A = np.random.random((2,2))
   ....: ev = numpy.linalg.eigvals(A)
   ....: print ev
   ....: ev.max()
   ....:
Parallel execution on engine(s): all
[stdout:0] [ 0.60640442  0.95919621]
Out [0:73]: 0.9591962130899806
[stdout:1] [ 0.38501813  1.29430871]
Out [1:73]: 1.2943087091452372
[stdout:2] [-0.85925141  0.9387692 ]
Out [2:73]: 0.93876920456230284
[stdout:3] [ 0.37998269  1.24218246]
Out [3:73]: 1.2421824618493817










%pxresult

If you are using %px in non-blocking mode, you won’t get output.
You can use %pxresult to display the outputs of the latest command,
as is done when %px is blocking:

In [39]: dv.block = False

In [40]: %px print 'hi'
Async parallel execution on engine(s): all

In [41]: %pxresult
[stdout:0] hi
[stdout:1] hi
[stdout:2] hi
[stdout:3] hi





%pxresult calls AsyncResult.display_outputs() on the most recent request.
It accepts the same output-grouping arguments as %%px, so you can use it to view
a result in different ways.




%autopx

The %autopx magic switches to a mode where everything you type is executed
on the engines until you do %autopx again.

In [30]: dv.block=True

In [31]: %autopx
%autopx enabled

In [32]: max_evals = []

In [33]: for i in range(100):
   ....:     a = numpy.random.rand(10,10)
   ....:     a = a+a.transpose()
   ....:     evals = numpy.linalg.eigvals(a)
   ....:     max_evals.append(evals[0].real)
   ....:

In [34]: print "Average max eigenvalue is: %f" % (sum(max_evals)/len(max_evals))
[stdout:0] Average max eigenvalue is: 10.193101
[stdout:1] Average max eigenvalue is: 10.064508
[stdout:2] Average max eigenvalue is: 10.055724
[stdout:3] Average max eigenvalue is: 10.086876

In [35]: %autopx
Auto Parallel Disabled








%pxconfig

The default targets and blocking behavior for the magics are governed by the block
and targets attribute of the active View.  If you have a handle for the view,
you can set these attributes directly, but if you don’t, you can change them with
the %pxconfig magic:

In [3]: %pxconfig --block

In [5]: %px print 'hi'
Parallel execution on engine(s): all
[stdout:0] hi
[stdout:1] hi
[stdout:2] hi
[stdout:3] hi

In [6]: %pxconfig --targets ::2

In [7]: %px print 'hi'
Parallel execution on engine(s): [0, 2]
[stdout:0] hi
[stdout:2] hi

In [8]: %pxconfig --noblock

In [9]: %px print 'are you there?'
Async parallel execution on engine(s): [0, 2]
Out[9]: <AsyncResult: execute>

In [10]: %pxresult
[stdout:0] are you there?
[stdout:2] are you there?










Multiple Active Views

The parallel magics are associated with a particular DirectView object.
You can change the active view by calling the activate() method
on any view.

In [11]: even = rc[::2]

In [12]: even.activate()

In [13]: %px print 'hi'
Async parallel execution on engine(s): [0, 2]
Out[13]: <AsyncResult: execute>

In [14]: even.block = True

In [15]: %px print 'hi'
Parallel execution on engine(s): [0, 2]
[stdout:0] hi
[stdout:2] hi





When activating a View, you can also specify a suffix, so that a whole different
set of magics are associated with that view, without replacing the existing ones.

# restore the original DirecView to the base %px magics
In [16]: rc.activate()
Out[16]: <DirectView all>

In [17]: even.activate('_even')

In [18]: %px print 'hi all'
Parallel execution on engine(s): all
[stdout:0] hi all
[stdout:1] hi all
[stdout:2] hi all
[stdout:3] hi all

In [19]: %px_even print "We aren't odd!"
Parallel execution on engine(s): [0, 2]
[stdout:0] We aren't odd!
[stdout:2] We aren't odd!





This suffix is applied to the end of all magics, e.g. %autopx_even, %pxresult_even, etc.

For convenience, the Client has a activate() method as well,
which creates a DirectView with block=True, activates it, and returns the new View.

The initial magics registered when you create a client are the result of a call to
rc.activate() with default args.




Engines as Kernels

Engines are really the same object as the Kernels used elsewhere in IPython,
with the minor exception that engines connect to a controller, while regular kernels
bind their sockets, listening for connections from a QtConsole or other frontends.

Sometimes for debugging or inspection purposes, you would like a QtConsole connected
to an engine for more direct interaction.  You can do this by first instructing
the Engine to also bind its kernel, to listen for connections:

In [50]: %px import ipyparallel as ipp; ipp.bind_kernel()





Then, if your engines are local, you can start a qtconsole right on the engine(s):

In [51]: %px %qtconsole





Careful with this one, because if your view is of 16 engines it will start 16 QtConsoles!

Or you can view the connection info and work out the right way to connect to the engines,
depending on where they live and where you are:

In [51]: %px %connect_info
Parallel execution on engine(s): all
[stdout:0]
{
  "stdin_port": 60387,
  "ip": "127.0.0.1",
  "hb_port": 50835,
  "key": "eee2dd69-7dd3-4340-bf3e-7e2e22a62542",
  "shell_port": 55328,
  "iopub_port": 58264
}

Paste the above JSON into a file, and connect with:
    $> ipython <app> --existing <file>
or, if you are local, you can connect with:
    $> ipython <app> --existing kernel-60125.json
or even just:
    $> ipython <app> --existing
if this is the most recent IPython session you have started.
[stdout:1]
{
  "stdin_port": 61869,
...






Note

%qtconsole will call bind_kernel() on an engine if it hasn’t been done already,
so you can often skip that first step.









          

      

      

    

  

    
      
          
            
  
The IPython task interface

The task interface to the cluster presents the engines as a fault tolerant,
dynamic load-balanced system of workers. Unlike the direct interface, in
the task interface the user have no direct access to individual engines. By
allowing the IPython scheduler to assign work, this interface is simultaneously
simpler and more powerful.

Best of all, the user can use both of these interfaces running at the same time
to take advantage of their respective strengths. When the user can break up
the user’s work into segments that do not depend on previous execution, the
task interface is ideal. But it also has more power and flexibility, allowing
the user to guide the distribution of jobs, without having to assign tasks to
engines explicitly.


Starting the IPython controller and engines

To follow along with this tutorial, you will need to start the IPython
controller and four IPython engines. The simplest way of doing this is to use
the ipcluster command:

$ ipcluster start -n 4





For more detailed information about starting the controller and engines, see
our introduction to using IPython for parallel computing.




Creating a LoadBalancedView instance

The first step is to import the IPython ipyparallel
module and then create a Client instance, and we will also be using
a LoadBalancedView, here called lview:

In [1]: import ipyparallel as ipp

In [2]: rc = ipp.Client()





This form assumes that the controller was started on localhost with default
configuration. If not, the location of the controller must be given as an
argument to the constructor:

# for a visible LAN controller listening on an external port:
In [2]: rc = ipp.Client('tcp://192.168.1.16:10101')
# or to connect with a specific profile you have set up:
In [3]: rc = ipp.Client(profile='mpi')





For load-balanced execution, we will make use of a LoadBalancedView object, which can
be constructed via the client’s load_balanced_view() method:

In [4]: lview = rc.load_balanced_view() # default load-balanced view






See also

For more information, see the in-depth explanation of Views.






Quick and easy parallelism

In many cases, you want to apply a Python function to a sequence of
objects, but in parallel. Like the direct interface, these can be
implemented via the task interface. The exact same tools can perform these
actions in load-balanced ways as well as multiplexed ways: a parallel version
of map() [https://docs.python.org/3/library/functions.html#map] and @view.parallel() function decorator. If one specifies the
argument balanced=True, then they are dynamically load balanced. Thus, if the
execution time per item varies significantly, you should use the versions in
the task interface.


Parallel map

To load-balance map(), use a LoadBalancedView:

In [62]: lview.block = True

In [63]: serial_result = map(lambda x:x**10, range(32))

In [64]: parallel_result = lview.map(lambda x:x**10, range(32))

In [65]: serial_result==parallel_result
Out[65]: True








Parallel function decorator

Parallel functions are just like normal functions, but they can be called on
sequences and in parallel. The direct interface provides a decorator
that turns any Python function into a parallel function:

In [10]: @lview.parallel()
   ....: def f(x):
   ....:     return 10.0*x**4
   ....:

In [11]: f.map(range(32))    # this is done in parallel
Out[11]: [0.0,10.0,160.0,...]










Dependencies

Often, pure atomic load-balancing is too primitive for your work. In these cases, you
may want to associate some kind of Dependency that describes when, where, or whether
a task can be run.  In IPython, we provide two types of dependencies:
Functional Dependencies and Graph Dependencies


Note

It is important to note that the pure ZeroMQ scheduler does not support dependencies,
and you will see errors or warnings if you try to use dependencies with the pure
scheduler.




Functional Dependencies

Functional dependencies are used to determine whether a given engine is capable of running
a particular task.  This is implemented via a special Exception [https://docs.python.org/3/library/exceptions.html#Exception] class,
UnmetDependency, found in ipyparallel.error.  Its use is very simple:
if a task fails with an UnmetDependency exception, then the scheduler, instead of relaying
the error up to the client like any other error, catches the error, and submits the task
to a different engine.  This will repeat indefinitely, and a task will never be submitted
to a given engine a second time.

You can manually raise the UnmetDependency yourself, but IPython has provided
some decorators for facilitating this behavior.

There are two decorators and a class used for functional dependencies:

In [9]: import ipyparallel as ipp






@ipp.require

The simplest sort of dependency is requiring that a Python module is available. The
@ipp.require decorator lets you define a function that will only run on engines where names
you specify are importable:

In [10]: @ipp.require('numpy', 'zmq')
   ....: def myfunc():
   ....:     return dostuff()





Now, any time you apply myfunc(), the task will only run on a machine that has
numpy and pyzmq available, and when myfunc() is called, numpy and zmq will be imported.
You can also require specific objects, not just module names:

def foo(a):
    return a*a

@ipp.require(foo)
def bar(b):
    return foo(b)

@ipp.require(bar)
def baz(c, d):
    return bar(c) - bar(d)

view.apply_sync(baz, 4, 5)








@ipp.depend

The @ipp.depend decorator lets you decorate any function with any other function to
evaluate the dependency. The dependency function will be called at the start of the task,
and if it returns False, then the dependency will be considered unmet, and the task
will be assigned to another engine. If the dependency returns anything other than
``False``, the rest of the task will continue.

In [10]: def platform_specific(plat):
   ....:    import sys
   ....:    return sys.platform == plat

In [11]: @ipp.depend(platform_specific, 'darwin')
   ....: def mactask():
   ....:    do_mac_stuff()

In [12]: @ipp.depend(platform_specific, 'nt')
   ....: def wintask():
   ....:    do_windows_stuff()





In this case, any time you apply mactask, it will only run on an OSX machine.
@ipp.depend is like apply, in that it has a @ipp.depend(f,*args,**kwargs)
signature.




dependents

You don’t have to use the decorators on your tasks, if for instance you may want
to run tasks with a single function but varying dependencies, you can directly construct
the dependent object that the decorators use:






Graph Dependencies

Sometimes you want to restrict the time and/or location to run a given task as a function
of the time and/or location of other tasks. This is implemented via a subclass of
set [https://docs.python.org/3/library/stdtypes.html#set], called a Dependency. A Dependency is a set of msg_ids
corresponding to tasks, and a few attributes to guide how to decide when the Dependency
has been met.

The switches we provide for interpreting whether a given dependency set has been met:


	any|all

	Whether the dependency is considered met if any of the dependencies are done, or
only after all of them have finished.  This is set by a Dependency’s all
boolean attribute, which defaults to True.



	success [default: True]

	Whether to consider tasks that succeeded as fulfilling dependencies.



	failure [defaultFalse]

	Whether to consider tasks that failed as fulfilling dependencies.
using failure=True,success=False is useful for setting up cleanup tasks, to be run
only when tasks have failed.





Sometimes you want to run a task after another, but only if that task succeeded. In this case,
success should be True and failure should be False. However sometimes you may
not care whether the task succeeds, and always want the second task to run, in which case you
should use success=failure=True. The default behavior is to only use successes.

There are other switches for interpretation that are made at the task level.  These are
specified via keyword arguments to the client’s apply() method.


	after,follow

	You may want to run a task after a given set of dependencies have been run and/or
run it where another set of dependencies are met. To support this, every task has an
after dependency to restrict time, and a follow dependency to restrict
destination.



	timeout

	You may also want to set a time-limit for how long the scheduler should wait before a
task’s dependencies are met. This is done via a timeout, which defaults to 0, which
indicates that the task should never timeout. If the timeout is reached, and the
scheduler still hasn’t been able to assign the task to an engine, the task will fail
with a DependencyTimeout.






Note

Dependencies only work within the task scheduler. You cannot instruct a load-balanced
task to run after a job submitted via the MUX interface.



The simplest form of Dependencies is with all=True, success=True, failure=False. In these cases,
you can skip using Dependency objects, and pass msg_ids or AsyncResult objects as the
follow and after keywords to client.apply():

In [14]: client.block=False

In [15]: ar = lview.apply(f, args, kwargs)

In [16]: ar2 = lview.apply(f2)

In [17]: with lview.temp_flags(after=[ar,ar2]):
   ....:    ar3 = lview.apply(f3)

In [18]: with lview.temp_flags(follow=[ar], timeout=2.5)
   ....:    ar4 = lview.apply(f3)






See also

Some parallel workloads can be described as a Directed Acyclic Graph [https://en.wikipedia.org/wiki/Directed_acyclic_graph], or DAG. See DAG
Dependencies for an example demonstrating how to use map a NetworkX DAG
onto task dependencies.




Impossible Dependencies

The schedulers do perform some analysis on graph dependencies to determine whether they
are not possible to be met. If the scheduler does discover that a dependency cannot be
met, then the task will fail with an ImpossibleDependency error. This way, if the
scheduler realized that a task can never be run, it won’t sit indefinitely in the
scheduler clogging the pipeline.

The basic cases that are checked:


	depending on nonexistent messages


	follow dependencies were run on more than one machine and all=True


	any dependencies failed and all=True,success=True,failures=False


	all dependencies failed and all=False,success=True,failure=False





Warning

This analysis has not been proven to be rigorous, so it is likely possible for tasks
to become impossible to run in obscure situations, so a timeout may be a good choice.










Retries and Resubmit


Retries

Another flag for tasks is retries.  This is an integer, specifying how many times
a task should be resubmitted after failure.  This is useful for tasks that should still run
if their engine was shutdown, or may have some statistical chance of failing.  The default
is to not retry tasks.




Resubmit

Sometimes you may want to re-run a task. This could be because it failed for some reason, and
you have fixed the error, or because you want to restore the cluster to an interrupted state.
For this, the Client has a rc.resubmit() method.  This takes one or more
msg_ids, and returns an AsyncHubResult for the result(s).  You cannot resubmit
a task that is pending - only those that have finished, either successful or unsuccessful.






Schedulers

There are a variety of valid ways to determine where jobs should be assigned in a
load-balancing situation.  In IPython, we support several standard schemes, and
even make it easy to define your own.  The scheme can be selected via the scheme
argument to ipcontroller, or in the TaskScheduler.schemename attribute
of a controller config object.

The built-in routing schemes:

To select one of these schemes:

$ ipcontroller --scheme=<schemename>
for instance:
$ ipcontroller --scheme=lru





lru: Least Recently Used


Always assign work to the least-recently-used engine.  A close relative of
round-robin, it will be fair with respect to the number of tasks, agnostic
with respect to runtime of each task.




plainrandom: Plain Random


Randomly picks an engine on which to run.




twobin: Two-Bin Random


Requires numpy

Pick two engines at random, and use the LRU of the two. This is known to be better
than plain random in many cases, but requires a small amount of computation.




leastload: Least Load


This is the default scheme

Always assign tasks to the engine with the fewest outstanding tasks (LRU breaks tie).




weighted: Weighted Two-Bin Random


Requires numpy

Pick two engines at random using the number of outstanding tasks as inverse weights,
and use the one with the lower load.





Greedy Assignment

Tasks can be assigned greedily as they are submitted. If their dependencies are
met, they will be assigned to an engine right away, and multiple tasks can be
assigned to an engine at a given time. This limit is set with the
TaskScheduler.hwm (high water mark) configurable in your
ipcontroller_config.py config file, with:

# the most common choices are:
c.TaskSheduler.hwm = 0 # (minimal latency, default in IPython < 0.13)
# or
c.TaskScheduler.hwm = 1 # (most-informed balancing, default in ≥ 0.13)





In IPython < 0.13, the default is 0, or no-limit. That is, there is no limit to the number of
tasks that can be outstanding on a given engine. This greatly benefits the
latency of execution, because network traffic can be hidden behind computation.
However, this means that workload is assigned without knowledge of how long
each task might take, and can result in poor load-balancing, particularly for
submitting a collection of heterogeneous tasks all at once. You can limit this
effect by setting hwm to a positive integer, 1 being maximum load-balancing (a
task will never be waiting if there is an idle engine), and any larger number
being a compromise between load-balancing and latency-hiding.

In practice, some users have been confused by having this optimization on by
default, so the default value has been changed to 1 in IPython 0.13. This can be slower,
but has more obvious behavior and won’t result in assigning too many tasks to
some engines in heterogeneous cases.




Pure ZMQ Scheduler

For maximum throughput, the ‘pure’ scheme is not Python at all, but a C-level
MonitoredQueue from PyZMQ, which uses a ZeroMQ DEALER socket to perform all
load-balancing. This scheduler does not support any of the advanced features of the Python
Scheduler.

Disabled features when using the ZMQ Scheduler:


	
	Engine unregistration

	Task farming will be disabled if an engine unregisters.
Further, if an engine is unregistered during computation, the scheduler may not recover.







	
	Dependencies

	Since there is no Python logic inside the Scheduler, routing decisions cannot be made
based on message content.







	
	Early destination notification

	The Python schedulers know which engine gets which task, and notify the Hub.  This
allows graceful handling of Engines coming and going.  There is no way to know
where ZeroMQ messages have gone, so there is no way to know what tasks are on which
engine until they finish.  This makes recovery from engine shutdown very difficult.










Note

TODO: performance comparisons








More details

The LoadBalancedView has many more powerful features that allow quite a bit
of flexibility in how tasks are defined and run. The next places to look are
in the following classes:


	LoadBalancedView


	AsyncResult


	apply()


	dependency




The following is an overview of how to use these classes together:


	Create a Client and LoadBalancedView


	Define some functions to be run as tasks


	Submit your tasks to using the apply() method of your
LoadBalancedView instance.


	Use Client.get_result() to get the results of the
tasks, or use the AsyncResult.get() method of the results to wait
for and then receive the results.





See also

A demo of DAG Dependencies with NetworkX and IPython.









          

      

      

    

  

    
      
          
            
  
The AsyncResult object

In non-blocking mode, apply() submits the command to be executed and
then returns a AsyncResult object immediately. The
AsyncResult object gives you a way of getting a result at a later
time through its get() method, but it also collects metadata
on execution.


Beyond multiprocessing’s AsyncResult


Note

The AsyncResult object provides a superset of the interface in
multiprocessing.pool.AsyncResult [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.AsyncResult].  See the
official Python documentation [https://docs.python.org/library/multiprocessing#multiprocessing.pool.AsyncResult]
for more on the basics of this interface.



Our AsyncResult objects add a number of convenient features for working with
parallel results, beyond what is provided by the original AsyncResult.


get_dict

First, is AsyncResult.get_dict(), which pulls results as a dictionary
keyed by engine_id, rather than a flat list.  This is useful for quickly
coordinating or distributing information about all of the engines.

As an example, here is a quick call that gives every engine a dict showing
the PID of every other engine:

In [10]: ar = rc[:].apply_async(os.getpid)
In [11]: pids = ar.get_dict()
In [12]: rc[:]['pid_map'] = pids





This trick is particularly useful when setting up inter-engine communication,
as in IPython’s examples/parallel/interengine examples.






Metadata

ipyparallel tracks some metadata about the tasks, which is stored
in the Client.metadata dict.  The AsyncResult object gives you an
interface for this information as well, including timestamps stdout/err,
and engine IDs.


Timing

IPython tracks various timestamps as datetime objects,
and the AsyncResult object has a few properties that turn these into useful
times (in seconds as floats).

For use while the tasks are still pending:


	ar.elapsed is the elapsed seconds since submission, for use
before the AsyncResult is complete.


	ar.progress is the number of tasks that have completed.  Fractional progress
would be:

1.0 * ar.progress / len(ar)







	AsyncResult.wait_interactive() will wait for the result to finish, but
print out status updates on progress and elapsed time while it waits.




For use after the tasks are done:


	ar.serial_time is the sum of the computation time of all of the tasks
done in parallel.


	ar.wall_time is the time between the first task submitted and last result
received.  This is the actual cost of computation, including IPython overhead.





Note

wall_time is only precise if the Client is waiting for results when
the task finished, because the received timestamp is made when the result is
unpacked by the Client, triggered by the spin() call. If you
are doing work in the Client, and not waiting/spinning, then received might
be artificially high.



An often interesting metric is the time it cost to do the work in parallel
relative to the serial computation, and this can be given with

speedup = ar.serial_time / ar.wall_time










Map results are iterable!

When an AsyncResult object has multiple results (e.g. the AsyncMapResult
object), you can iterate through results themselves, and act on them as they arrive:

from __future__ import print_function

import time

import ipyparallel as ipp

# create client & view
rc = ipp.Client()
dv = rc[:]
v = rc.load_balanced_view()

# scatter 'id', so id=0,1,2 on engines 0,1,2
dv.scatter('id', rc.ids, flatten=True)
print("Engine IDs: ", dv['id'])

# create a Reference to `id`. This will be a different value on each engine
ref = ipp.Reference('id')
print("sleeping for `id` seconds on each engine")
tic = time.time()
ar = dv.apply(time.sleep, ref)
for i,r in enumerate(ar):
    print("%i: %.3f"%(i, time.time()-tic))

def sleep_here(t):
    import time
    time.sleep(t)
    return id,t

# one call per task
print("running with one call per task")
amr = v.map(sleep_here, [.01*t for t in range(100)])
tic = time.time()
for i,r in enumerate(amr):
    print("task %i on engine %i: %.3f" % (i, r[0], time.time()-tic))

print("running with four calls per task")
# with chunksize, we can have four calls per task
amr = v.map(sleep_here, [.01*t for t in range(100)], chunksize=4)
tic = time.time()
for i,r in enumerate(amr):
    print("task %i on engine %i: %.3f" % (i, r[0], time.time()-tic))

print("running with two calls per task, with unordered results")
# We can even iterate through faster results first, with ordered=False
amr = v.map(sleep_here, [.01*t for t in range(100,0,-1)], ordered=False, chunksize=2)
tic = time.time()
for i,r in enumerate(amr):
    print("slept %.2fs on engine %i: %.3f" % (r[1], r[0], time.time()-tic))





That is to say, if you treat an AsyncMapResult as if it were a list of your actual
results, it should behave as you would expect, with the only difference being
that you can start iterating through the results before they have even been computed.

This lets you do a dumb version of map/reduce with the builtin Python functions,
and the only difference between doing this locally and doing it remotely in parallel
is using the asynchronous view.map instead of the builtin map.

Here is a simple one-line RMS (root-mean-square) implemented with Python’s builtin map/reduce.

In [38]: X = np.linspace(0,100)

In [39]: from math import sqrt

In [40]: add = lambda a,b: a+b

In [41]: sq = lambda x: x*x

In [42]: sqrt(reduce(add, map(sq, X)) / len(X))
Out[42]: 58.028845747399714

In [43]: sqrt(reduce(add, view.map(sq, X)) / len(X))
Out[43]: 58.028845747399714





To break that down:


	map(sq, X) Compute the square of each element in the list (locally, or in parallel)


	reduce(add, sqX) / len(X) compute the mean by summing over the list (or AsyncMapResult)
and dividing by the size


	take the square root of the resulting number





See also

When AsyncResult or the AsyncMapResult don’t provide what you need (for instance,
handling individual results as they arrive, but with metadata), you can always
split the original result’s msg_ids attribute, and handle them as you like.

For an example of this, see examples/customresult.py









          

      

      

    

  

    
      
          
            
  
Using MPI with IPython

Often, a parallel algorithm will require moving data between the engines. One
way of accomplishing this is by doing a pull and then a push using the
direct view. However, this will be slow as all the data has to go
through the controller to the client and then back through the controller, to
its final destination.

A much better way of moving data between engines is to use a message passing
library, such as the Message Passing Interface (MPI) [MPI]. IPython’s
parallel computing architecture has been designed from the ground up to
integrate with MPI. This document describes how to use MPI with IPython.


Additional installation requirements

If you want to use MPI with IPython, you will need to install:


	A standard MPI implementation such as OpenMPI [OpenMPI] or MPICH.


	The mpi4py [mpi4py] package.





Note

The mpi4py package is not a strict requirement. However, you need to
have some way of calling MPI from Python. You also need some way of
making sure that MPI_Init() is called when the IPython engines start
up. There are a number of ways of doing this and a good number of
associated subtleties. We highly recommend using mpi4py as it
takes care of most of these problems. If you want to do something
different, let us know and we can help you get started.






Starting the engines with MPI enabled

To use code that calls MPI, there are typically two things that MPI requires.


	The process that wants to call MPI must be started using
mpiexec or a batch system (like PBS) that has MPI support.


	Once the process starts, it must call MPI_Init().




There are a couple of ways that you can start the IPython engines and get
these things to happen.


Automatic starting using mpiexec and ipcluster

The easiest approach is to use the MPI Launchers in ipcluster,
which will first start a controller and then a set of engines using
mpiexec:

$ ipcluster start -n 4 --engines=MPIEngineSetLauncher





This approach is best as interrupting ipcluster will automatically
stop and clean up the controller and engines.




Manual starting using mpiexec

If you want to start the IPython engines using the mpiexec:
do:

$ mpiexec -n 4 ipengine





This requires that you already have a controller running and that the FURL
files for the engines are in place. We also have built in support for
PyTrilinos [PyTrilinos], which can be used (assuming is installed) by
starting the engines with:

$ mpiexec -n 4 ipengine --mpi=pytrilinos








Automatic starting using PBS and ipcluster

The ipcluster command also has built-in integration with PBS. For
more information on this approach, see our documentation on ipcluster.






Actually using MPI

Once the engines are running with MPI enabled, you are ready to go. You can
now call any code that uses MPI in the IPython engines. And, all of this can
be done interactively. Here we show a simple example that uses mpi4py
[mpi4py] version 1.1.0 or later.

First, lets define a function that uses MPI to calculate the sum of a
distributed array. Save the following text in a file called psum.py:

from mpi4py import MPI
import numpy as np

def psum(a):
    locsum = np.sum(a)
    rcvBuf = np.array(0.0,'d')
    MPI.COMM_WORLD.Allreduce([locsum, MPI.DOUBLE],
        [rcvBuf, MPI.DOUBLE],
        op=MPI.SUM)
    return rcvBuf





Now, start an IPython cluster:

$ ipcluster start --profile=mpi -n 4






Note

It is assumed here that the mpi profile has been set up, as described here.



Finally, connect to the cluster and use this function interactively. In this
case, we create a distributed array and sum up all its elements in a distributed
manner using our psum() function:

In [1]: import ipyparallel as ipp

In [2]: c = ipp.Client(profile='mpi')

In [3]: view = c[:]

In [4]: view.activate() # enable magics

# run the contents of the file on each engine:
In [5]: view.run('psum.py')

In [6]: view.scatter('a',np.arange(16,dtype='float'))

In [7]: view['a']
Out[7]: [array([ 0.,  1.,  2.,  3.]),
         array([ 4.,  5.,  6.,  7.]),
         array([  8.,   9.,  10.,  11.]),
         array([ 12.,  13.,  14.,  15.])]

In [7]: %px totalsum = psum(a)
Parallel execution on engines: [0,1,2,3]

In [8]: view['totalsum']
Out[8]: [120.0, 120.0, 120.0, 120.0]





Any Python code that makes calls to MPI can be used in this manner, including
compiled C, C++ and Fortran libraries that have been exposed to Python.


	MPI

	Message Passing Interface.  http://www-unix.mcs.anl.gov/research/projects/mpi/



	mpi4py(1,2)

	MPI for Python. mpi4py: http://mpi4py.scipy.org/



	OpenMPI

	Open MPI. http://www.open-mpi.org/



	PyTrilinos

	PyTrilinos. https://trilinos.org/











          

      

      

    

  

    
      
          
            
  
IPython’s Task Database


Enabling a DB Backend

The IPython Hub can store all task requests and results in a database.
Currently supported backends are: MongoDB, SQLite, and an in-memory DictDB.

The default is to store recent tasks in a dictionary in memory,
which deletes old values if it gets too big, and only survives
as long as the controller is running.

Using a real database is optional due to its potential Cost.
You can enable one, either at the command-line:

$> ipcontroller --sqlitedb # or --mongodb or --nodb





or in your ipcontroller_config.py:

c.HubFactory.db_class = "NoDB"
c.HubFactory.db_class = "DictDB" # default
c.HubFactory.db_class = "MongoDB"
c.HubFactory.db_class = "SQLiteDB"








Using the Task Database

The most common use case for this is clients requesting results for tasks they did not submit, via:

In [1]: rc.get_result(task_id)





However, since we have this DB backend, we provide a direct query method in the Client
for users who want deeper introspection into their task history. The db_query() method of
the Client is modeled after MongoDB queries, so if you have used MongoDB it should look
familiar.  In fact, when the MongoDB backend is in use, the query is relayed directly.
When using other backends, the interface is emulated and only a subset of queries is possible.


See also

MongoDB query docs: https://docs.mongodb.org/manual/tutorial/query-documents/



Client.db_query() takes a dictionary query object, with keys from the TaskRecord key list,
and values of either exact values to test, or MongoDB queries, which are dicts of The form:
{'operator' : 'argument(s)'}. There is also an optional keys argument, that specifies
which subset of keys should be retrieved. The default is to retrieve all keys excluding the
request and result buffers. db_query() returns a list of TaskRecord dicts. Also like
MongoDB, the msg_id key will always be included, whether requested or not.

TaskRecord keys:








	Key

	Type

	Description





	msg_id

	uuid(ascii)

	The msg ID



	header

	dict

	The request header



	content

	dict

	The request content (likely empty)



	buffers

	list(bytes)

	buffers containing serialized request objects



	submitted

	datetime

	timestamp for time of submission (set by client)



	client_uuid

	uuid(ascii)

	IDENT of client’s socket



	engine_uuid

	uuid(ascii)

	IDENT of engine’s socket



	started

	datetime

	time task began execution on engine



	completed

	datetime

	time task finished execution (success or failure) on engine



	resubmitted

	uuid(ascii)

	msg_id of resubmitted task (if applicable)



	result_header

	dict

	header for result



	result_content

	dict

	content for result



	result_buffers

	list(bytes)

	buffers containing serialized request objects



	queue

	str

	The name of the queue for the task (‘mux’ or ‘task’)



	execute_input

	str

	Python input source



	execute_result

	dict

	Python output (execute_result message content)



	error

	dict

	Python traceback (error message content)



	stdout

	str

	Stream of stdout data



	stderr

	str

	Stream of stderr data






MongoDB operators we emulate on all backends:







	Operator

	Python equivalent





	‘$in’

	in



	‘$nin’

	not in



	‘$eq’

	==



	‘$ne’

	!=



	‘$ge’

	>



	‘$gte’

	>=



	‘$le’

	<



	‘$lte’

	<=






The DB Query is useful for two primary cases:


	deep polling of task status or metadata


	selecting a subset of tasks, on which to perform a later operation (e.g. wait on result, purge records, resubmit,…)







Example Queries

To get all msg_ids that are not completed, only retrieving their ID and start time:

In [1]: incomplete = rc.db_query({'completed' : None}, keys=['msg_id', 'started'])





All jobs started in the last hour by me:

In [1]: from datetime import datetime, timedelta

In [2]: hourago = datetime.now() - timedelta(1./24)

In [3]: recent = rc.db_query({'started' : {'$gte' : hourago },
                                'client_uuid' : rc.session.session})





All jobs started more than an hour ago, by clients other than me:

In [3]: recent = rc.db_query({'started' : {'$le' : hourago },
                                'client_uuid' : {'$ne' : rc.session.session}})





Result headers for all jobs on engine 3 or 4:

In [1]: uuids = map(rc._engines.get, (3,4))

In [2]: hist34 = rc.db_query({'engine_uuid' : {'$in' : uuids }, keys='result_header')








Cost

The advantage of the database backends is, of course, that large amounts of
data can be stored that won’t fit in memory.  The basic DictDB ‘backend’
stores all of this information in a Python dictionary.  This is very fast,
but will run out of memory quickly if you move a lot of data around, or your
cluster is to run for a long time.

Unfortunately, the DB backends (SQLite and MongoDB) right now are rather slow,
and can still consume large amounts of resources, particularly if large tasks
or results are being created at a high frequency.

For this reason, we have added NoDB, a dummy backend that doesn’t
store any information. When you use this database, nothing is stored,
and any request for results will result in a KeyError.  This obviously prevents
later requests for results and task resubmission from functioning, but
sometimes those nice features are not as useful as keeping Hub memory under
control.







          

      

      

    

  

    
      
          
            
  
Security details of IPython


Note

This section is not thorough, and IPython.kernel.zmq needs a thorough security
audit.



IPython’s IPython.kernel.zmq package exposes the full power of the
Python interpreter over a TCP/IP network for the purposes of parallel
computing. This feature brings up the important question of IPython’s security
model. This document gives details about this model and how it is implemented
in IPython’s architecture.


Process and network topology

To enable parallel computing, IPython has a number of different processes that
run. These processes are discussed at length in the IPython documentation and
are summarized here:


	The IPython engine.  This process is a full blown Python
interpreter in which user code is executed.  Multiple
engines are started to make parallel computing possible.


	The IPython hub.  This process monitors a set of
engines and schedulers, and keeps track of the state of the processes. It listens
for registration connections from engines and clients, and monitor connections
from schedulers.


	The IPython schedulers. This is a set of processes that relay commands and results
between clients and engines. They are typically on the same machine as the controller,
and listen for connections from engines and clients, but connect to the Hub.


	The IPython client.  This process is typically an
interactive Python process that is used to coordinate the
engines to get a parallel computation done.




Collectively, these processes are called the IPython cluster, and the hub and schedulers
together are referred to as the controller.

These processes communicate over any transport supported by ZeroMQ (tcp,pgm,infiniband,ipc)
with a well defined topology. The IPython hub and schedulers listen on sockets. Upon
starting, an engine connects to a hub and registers itself, which then informs the engine
of the connection information for the schedulers, and the engine then connects to the
schedulers. These engine/hub and engine/scheduler connections persist for the
lifetime of each engine.

The IPython client also connects to the controller processes using a number of socket
connections. As of writing, this is one socket per scheduler (4), and 3 connections to the
hub for a total of 7. These connections persist for the lifetime of the client only.

A given IPython controller and set of engines engines typically has a relatively
short lifetime. Typically this lifetime corresponds to the duration of a single parallel
simulation performed by a single user. Finally, the hub, schedulers, engines, and client
processes typically execute with the permissions of that same user. More specifically, the
controller and engines are not executed as root or with any other superuser permissions.




Application logic

When running the IPython kernel to perform a parallel computation, a user
utilizes the IPython client to send Python commands and data through the
IPython schedulers to the IPython engines, where those commands are executed
and the data processed. The design of IPython ensures that the client is the
only access point for the capabilities of the engines. That is, the only way
of addressing the engines is through a client.

A user can utilize the client to instruct the IPython engines to execute
arbitrary Python commands. These Python commands can include calls to the
system shell, access the filesystem, etc., as required by the user’s
application code. From this perspective, when a user runs an IPython engine on
a host, that engine has the same capabilities and permissions as the user
themselves (as if they were logged onto the engine’s host with a terminal).




Secure network connections


Overview

ZeroMQ provides exactly no security. For this reason, users of IPython must be very
careful in managing connections, because an open TCP/IP socket presents access to
arbitrary execution as the user on the engine machines. As a result, the default behavior
of controller processes is to only listen for clients on the loopback interface, and the
client must establish SSH tunnels to connect to the controller processes.


Warning

If the controller’s loopback interface is untrusted, then IPython should be considered
vulnerable, and this extends to the loopback of all connected clients, which have
opened a loopback port that is redirected to the controller’s loopback port.






SSH

Since ZeroMQ provides no security, SSH tunnels are the primary source of secure
connections. A connector file, such as ipcontroller-client.json, will contain
information for connecting to the controller, possibly including the address of an
ssh-server through with the client is to tunnel. The Client object then creates tunnels
using either [OpenSSH] or [Paramiko], depending on the platform. If users do not wish to
use OpenSSH or Paramiko, or the tunneling utilities are insufficient, then they may
construct the tunnels themselves, and connect clients and engines as if the
controller were on loopback on the connecting machine.




Authentication

To protect users of shared machines, [HMAC] digests are used to sign messages, using a
shared key.

The Session object that handles the message protocol uses a unique key to verify valid
messages. This can be any value specified by the user, but the default behavior is a
pseudo-random 128-bit number, as generated by uuid.uuid4(). This key is used to
initialize an HMAC object, which digests all messages, and includes that digest as a
signature and part of the message. Every message that is unpacked (on Controller, Engine,
and Client) will also be digested by the receiver, ensuring that the sender’s key is the
same as the receiver’s. No messages that do not contain this key are acted upon in any
way. The key itself is never sent over the network.

There is exactly one shared key per cluster - it must be the same everywhere. Typically,
the controller creates this key, and stores it in the private connection files
ipython-{engine|client}.json. These files are typically stored in the
~/.ipython/profile_<name>/security directory, and are maintained as readable only by the
owner, as is common practice with a user’s keys in their .ssh directory.


Warning

It is important to note that the signatures protect against unauthorized messages,
but, as there is no encryption, provide exactly no protection of data privacy.  It is
possible, however, to use a custom serialization scheme (via Session.packer/unpacker
traits) that does incorporate your own encryption scheme.








Specific security vulnerabilities

There are a number of potential security vulnerabilities present in IPython’s
architecture. In this section we discuss those vulnerabilities and detail how
the security architecture described above prevents them from being exploited.


Unauthorized clients

The IPython client can instruct the IPython engines to execute arbitrary
Python code with the permissions of the user who started the engines. If an
attacker were able to connect their own hostile IPython client to the IPython
controller, they could instruct the engines to execute code.

On the first level, this attack is prevented by requiring access to the controller’s
ports, which are recommended to only be open on loopback if the controller is on an
untrusted local network. If the attacker does have access to the Controller’s ports, then
the attack is prevented by the capabilities based client authentication of the execution
key. The relevant authentication information is encoded into the JSON file that clients
must present to gain access to the IPython controller. By limiting the distribution of
those keys, a user can grant access to only authorized persons, as with SSH keys.

It is highly unlikely that an execution key could be guessed by an attacker
in a brute force guessing attack. A given instance of the IPython controller
only runs for a relatively short amount of time (on the order of hours). Thus
an attacker would have only a limited amount of time to test a search space of
size 2**128.  For added security, users can have arbitrarily long keys.


Warning

If the attacker has gained enough access to intercept loopback connections on either the
controller or client, then a duplicate message can be sent. To protect against this,
recipients only allow each signature once, and consider duplicates invalid.  However,
the duplicate message could be sent to another recipient using the same key,
and it would be considered valid.






Unauthorized engines

If an attacker were able to connect a hostile engine to a user’s controller,
the user might unknowingly send sensitive code or data to the hostile engine.
This attacker’s engine would then have full access to that code and data.

This type of attack is prevented in the same way as the unauthorized client
attack, through the usage of the capabilities based authentication scheme.




Unauthorized controllers

It is also possible that an attacker could try to convince a user’s IPython
client or engine to connect to a hostile IPython controller. That controller
would then have full access to the code and data sent between the IPython
client and the IPython engines.

Again, this attack is prevented through the capabilities in a connection file, which
ensure that a client or engine connects to the correct controller. It is also important to
note that the connection files also encode the IP address and port that the controller is
listening on, so there is little chance of mistakenly connecting to a controller running
on a different IP address and port.

When starting an engine or client, a user must specify the key to use
for that connection. Thus, in order to introduce a hostile controller, the
attacker must convince the user to use the key associated with the
hostile controller. As long as a user is diligent in only using keys from
trusted sources, this attack is not possible.


Note

I may be wrong, the unauthorized controller may be easier to fake than this.








Other security measures

A number of other measures are taken to further limit the security risks
involved in running the IPython kernel.

First, by default, the IPython controller listens on random port numbers.
While this can be overridden by the user, in the default configuration, an
attacker would have to do a port scan to even find a controller to attack.
When coupled with the relatively short running time of a typical controller
(on the order of hours), an attacker would have to work extremely hard and
extremely fast to even find a running controller to attack.

Second, much of the time, especially when run on supercomputers or clusters,
the controller is running behind a firewall. Thus, for engines or client to
connect to the controller:


	The different processes have to all be behind the firewall.




or:


	The user has to use SSH port forwarding to tunnel the
connections through the firewall.




In either case, an attacker is presented with additional barriers that prevent
attacking or even probing the system.




Summary

IPython’s architecture has been carefully designed with security in mind. The
capabilities based authentication model, in conjunction with SSH tunneled
TCP/IP channels, address the core potential vulnerabilities in the system,
while still enabling user’s to use the system in open networks.


	RFC5246

	<http://tools.ietf.org/html/rfc5246>



	OpenSSH

	<http://www.openssh.com/>



	Paramiko

	<https://www.lag.net/paramiko/>



	HMAC

	<http://tools.ietf.org/html/rfc2104.html>











          

      

      

    

  

    
      
          
            
  
Parallel examples

In this section we describe two more involved examples of using an IPython
cluster to perform a parallel computation. We will be doing some plotting,
so we start IPython with matplotlib integration by typing:

ipython --matplotlib





at the system command line.
Or you can enable matplotlib integration at any point with:

In [1]: %matplotlib






150 million digits of pi

In this example we would like to study the distribution of digits in the
number pi (in base 10). While it is not known if pi is a normal number (a
number is normal in base 10 if 0-9 occur with equal likelihood) numerical
investigations suggest that it is. We will begin with a serial calculation on
10,000 digits of pi and then perform a parallel calculation involving 150
million digits.

In both the serial and parallel calculation we will be using functions defined
in the pidigits.py file, which is available in the
examples/parallel directory of the IPython source distribution.
These functions provide basic facilities for working with the digits of pi and
can be loaded into IPython by putting pidigits.py in your current
working directory and then doing:

In [1]: run pidigits.py






Serial calculation

For the serial calculation, we will use SymPy [http://www.sympy.org] to
calculate 10,000 digits of pi and then look at the frequencies of the digits
0-9. Out of 10,000 digits, we expect each digit to occur 1,000 times. While
SymPy is capable of calculating many more digits of pi, our purpose here is to
set the stage for the much larger parallel calculation.

In this example, we use two functions from pidigits.py:
one_digit_freqs() (which calculates how many times each digit occurs)
and plot_one_digit_freqs() (which uses Matplotlib to plot the result).
Here is an interactive IPython session that uses these functions with
SymPy:

In [7]: import sympy

In [8]: pi = sympy.pi.evalf(40)

In [9]: pi
Out[9]: 3.141592653589793238462643383279502884197

In [10]: pi = sympy.pi.evalf(10000)

In [11]: digits = (d for d in str(pi)[2:])  # create a sequence of digits

In [13]: freqs = one_digit_freqs(digits)

In [14]: plot_one_digit_freqs(freqs)
Out[14]: [<matplotlib.lines.Line2D object at 0x18a55290>]





The resulting plot of the single digit counts shows that each digit occurs
approximately 1,000 times, but that with only 10,000 digits the
statistical fluctuations are still rather large:

[image: _images/single_digits.png]
It is clear that to reduce the relative fluctuations in the counts, we need
to look at many more digits of pi. That brings us to the parallel calculation.




Parallel calculation

Calculating many digits of pi is a challenging computational problem in itself.
Because we want to focus on the distribution of digits in this example, we
will use pre-computed digit of pi from the website of Professor Yasumasa
Kanada at the University of Tokyo (http://www.super-computing.org). These
digits come in a set of text files (ftp://pi.super-computing.org/.2/pi200m/)
that each have 10 million digits of pi.

For the parallel calculation, we have copied these files to the local hard
drives of the compute nodes. A total of 15 of these files will be used, for a
total of 150 million digits of pi. To make things a little more interesting we
will calculate the frequencies of all 2 digits sequences (00-99) and then plot
the result using a 2D matrix in Matplotlib.

The overall idea of the calculation is simple: each IPython engine will
compute the two digit counts for the digits in a single file. Then in a final
step the counts from each engine will be added up. To perform this
calculation, we will need two top-level functions from pidigits.py,
compute_two_digit_freqs() and reduce_freqs():

def compute_two_digit_freqs(filename):
    """
    Read digits of pi from a file and compute the 2 digit frequencies.
    """
    d = txt_file_to_digits(filename)
    freqs = two_digit_freqs(d)
    return freqs

def reduce_freqs(freqlist):
    """
    Add up a list of freq counts to get the total counts.
    """
    allfreqs = np.zeros_like(freqlist[0])
    for f in freqlist:
        allfreqs += f
    return allfreqs





We will also use the plot_two_digit_freqs() function to plot the
results. The code to run this calculation in parallel is contained in
examples/parallel/parallelpi.py. This code can be run in parallel
using IPython by following these steps:


	Use ipcluster to start 15 engines. We used 16 cores of an SGE linux
cluster (1 controller + 15 engines).


	With the file parallelpi.py in your current working directory, open
up IPython, enable matplotlib, and type run parallelpi.py.  This will download
the pi files via ftp the first time you run it, if they are not
present in the Engines’ working directory.




When run on our 16 cores, we observe a speedup of 14.2x. This is slightly
less than linear scaling (16x) because the controller is also running on one of
the cores.

To emphasize the interactive nature of IPython, we now show how the
calculation can also be run by typing the commands from
parallelpi.py interactively into IPython:

In [1]: import ipyparallel as ipp

# The Client allows us to use the engines interactively.
# We pass Client the name of the cluster profile we
# are using.
In [2]: c = ipp.Client(profile='mycluster')
In [3]: v = c[:]

In [3]: c.ids
Out[3]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

In [4]: run pidigits.py

In [5]: filestring = 'pi200m.ascii.%(i)02dof20'

# Create the list of files to process.
In [6]: files = [filestring % {'i':i} for i in range(1,16)]

In [7]: files
Out[7]:
['pi200m.ascii.01of20',
 'pi200m.ascii.02of20',
 'pi200m.ascii.03of20',
 'pi200m.ascii.04of20',
 'pi200m.ascii.05of20',
 'pi200m.ascii.06of20',
 'pi200m.ascii.07of20',
 'pi200m.ascii.08of20',
 'pi200m.ascii.09of20',
 'pi200m.ascii.10of20',
 'pi200m.ascii.11of20',
 'pi200m.ascii.12of20',
 'pi200m.ascii.13of20',
 'pi200m.ascii.14of20',
 'pi200m.ascii.15of20']

# download the data files if they don't already exist:
In [8]: v.map(fetch_pi_file, files)

# This is the parallel calculation using the Client.map method
# which applies compute_two_digit_freqs to each file in files in parallel.
In [9]: freqs_all = v.map(compute_two_digit_freqs, files)

# Add up the frequencies from each engine.
In [10]: freqs = reduce_freqs(freqs_all)

In [11]: plot_two_digit_freqs(freqs)
Out[11]: <matplotlib.image.AxesImage object at 0x18beb110>

In [12]: plt.title('2 digit counts of 150m digits of pi')
Out[12]: <matplotlib.text.Text object at 0x18d1f9b0>





The resulting plot generated by Matplotlib is shown below. The colors indicate
which two digit sequences are more (red) or less (blue) likely to occur in the
first 150 million digits of pi. We clearly see that the sequence “41” is
most likely and that “06” and “07” are least likely. Further analysis would
show that the relative size of the statistical fluctuations have decreased
compared to the 10,000 digit calculation.

[image: _images/two_digit_counts.png]





Conclusion

To conclude these examples, we summarize the key features of IPython’s
parallel architecture that have been demonstrated:


	Serial code can be parallelized often with only a few extra lines of code.
We have used the DirectView and LoadBalancedView classes
for this purpose.


	The resulting parallel code can be run without ever leaving the IPython’s
interactive shell.


	Any data computed in parallel can be explored interactively through
visualization or further numerical calculations.


	We have run these examples on a cluster running RHEL 5 and Sun GridEngine.
IPython’s built in support for SGE (and other batch systems) makes it easy
to get started with IPython’s parallel capabilities.










          

      

      

    

  

    
      
          
            
  
DAG Dependencies

Often, parallel workflow is described in terms of a Directed Acyclic Graph [https://en.wikipedia.org/wiki/Directed_acyclic_graph] or DAG.  A popular library
for working with Graphs is NetworkX [https://networkx.github.io/].  Here, we will walk through a demo mapping
a nx DAG to task dependencies.

The full script that runs this demo can be found in
examples/parallel/dagdeps.py.


Why are DAGs good for task dependencies?

The ‘G’ in DAG is ‘Graph’. A Graph is a collection of nodes and edges that connect
the nodes. For our purposes, each node would be a task, and each edge would be a
dependency. The ‘D’ in DAG stands for ‘Directed’. This means that each edge has a
direction associated with it. So we can interpret the edge (a,b) as meaning that b depends
on a, whereas the edge (b,a) would mean a depends on b. The ‘A’ is ‘Acyclic’, meaning that
there must not be any closed loops in the graph. This is important for dependencies,
because if a loop were closed, then a task could ultimately depend on itself, and never be
able to run. If your workflow can be described as a DAG, then it is impossible for your
dependencies to cause a deadlock.




A Sample DAG

Here, we have a very simple 5-node DAG:


[image: _images/simpledag.png]


With NetworkX, an arrow is a fattened bit on the edge. Here, we can see that task 0
depends on nothing, and can run immediately. 1 and 2 depend on 0; 3 depends on
1 and 2; and 4 depends only on 1.

A possible sequence of events for this workflow:


	Task 0 can run right away


	0 finishes, so 1,2 can start


	1 finishes, 3 is still waiting on 2, but 4 can start right away


	2 finishes, and 3 can finally start




Further, taking failures into account, assuming all dependencies are run with the default
success=True,failure=False, the following cases would occur for each node’s failure:


	fails: all other tasks fail as Impossible


	2 can still succeed, but 3,4 are unreachable


	3 becomes unreachable, but 4 is unaffected


	and 4. are terminal, and can have no effect on other nodes




The code to generate the simple DAG:

import networkx as nx

G = nx.DiGraph()

# add 5 nodes, labeled 0-4:
map(G.add_node, range(5))
# 1,2 depend on 0:
G.add_edge(0,1)
G.add_edge(0,2)
# 3 depends on 1,2
G.add_edge(1,3)
G.add_edge(2,3)
# 4 depends on 1
G.add_edge(1,4)

# now draw the graph:
pos = { 0 : (0,0), 1 : (1,1), 2 : (-1,1),
        3 : (0,2), 4 : (2,2)}
nx.draw(G, pos, edge_color='r')





For demonstration purposes, we have a function that generates a random DAG with a given
number of nodes and edges.

def random_dag(nodes, edges):
    """Generate a random Directed Acyclic Graph (DAG) with a given number of nodes and edges."""
    G = nx.DiGraph()
    for i in range(nodes):
        G.add_node(i)
    while edges > 0:
        a = randint(0,nodes-1)
        b=a
        while b==a:
            b = randint(0,nodes-1)
        G.add_edge(a,b)
        if nx.is_directed_acyclic_graph(G):
            edges -= 1
        else:
            # we closed a loop!
            G.remove_edge(a,b)
    return G





So first, we start with a graph of 32 nodes, with 128 edges:

In [2]: G = random_dag(32,128)





Now, we need to build our dict of jobs corresponding to the nodes on the graph:

In [3]: jobs = {}

# in reality, each job would presumably be different
# randomwait is a function that sleeps for a random interval
In [4]: for node in G:
   ...:     jobs[node] = randomwait





Once we have a dict of jobs matching the nodes on the graph, we can start submitting jobs,
and linking up the dependencies. Since we don’t know a job’s msg_id until it is submitted,
which is necessary for building dependencies, it is critical that we don’t submit any jobs
before other jobs it may depend on. Fortunately, NetworkX provides a
topological_sort() method which ensures exactly this. It presents an iterable, that
guarantees that when you arrive at a node, you have already visited all the nodes it
on which it depends:

In [5]: rc = ipp.Client()
In [5]: view = rc.load_balanced_view()

In [6]: results = {}

In [7]: for node in nx.topological_sort(G):
   ...:    # get list of AsyncResult objects from nodes
   ...:    # leading into this one as dependencies
   ...:    deps = [ results[n] for n in G.predecessors(node) ]
   ...:    # submit and store AsyncResult object
   ...:    with view.temp_flags(after=deps, block=False):
   ...:         results[node] = view.apply(jobs[node])





Now that we have submitted all the jobs, we can wait for the results:

In [8]: view.wait(results.values())





Now, at least we know that all the jobs ran and did not fail (r.get() would have
raised an error if a task failed).  But we don’t know that the ordering was properly
respected.  For this, we can use the metadata attribute of each AsyncResult.

These objects store a variety of metadata about each task, including various timestamps.
We can validate that the dependencies were respected by checking that each task was
started after all of its predecessors were completed:

def validate_tree(G, results):
    """Validate that jobs executed after their dependencies."""
    for node in G:
        started = results[node].metadata.started
        for parent in G.predecessors(node):
            finished = results[parent].metadata.completed
            assert started > finished, "%s should have happened after %s"%(node, parent)





We can also validate the graph visually. By drawing the graph with each node’s x-position
as its start time, all arrows must be pointing to the right if dependencies were respected.
For spreading, the y-position will be the runtime of the task, so long tasks
will be at the top, and quick, small tasks will be at the bottom.

In [10]: from matplotlib.dates import date2num

In [11]: from matplotlib.cm import gist_rainbow

In [12]: pos = {}; colors = {}

In [12]: for node in G:
   ....:    md = results[node].metadata
   ....:    start = date2num(md.started)
   ....:    runtime = date2num(md.completed) - start
   ....:    pos[node] = (start, runtime)
   ....:    colors[node] = md.engine_id

In [13]: nx.draw(G, pos, node_list=colors.keys(), node_color=colors.values(),
   ....:    cmap=gist_rainbow)






[image: _images/dagdeps.png]
Time started on x, runtime on y, and color-coded by engine-id (in this case there
were four engines). Edges denote dependencies.









          

      

      

    

  

    
      
          
            
  
Details of Parallel Computing with IPython


Note

There are still many sections to fill out in this doc




Caveats

First, some caveats about the detailed workings of parallel computing with 0MQ and IPython.


Non-copying sends and numpy arrays

When numpy arrays are passed as arguments to apply or via data-movement methods, they are not
copied. This means that you must be careful if you are sending an array that you intend to work
on. PyZMQ does allow you to track when a message has been sent so you can know when it is safe
to edit the buffer, but IPython only allows for this.

It is also important to note that the non-copying receive of a message is read-only. That
means that if you intend to work in-place on an array that you have sent or received, you must
copy it. This is true for both numpy arrays sent to engines and numpy arrays retrieved as
results.

The following will fail:

In [3]: A = numpy.zeros(2)

In [4]: def setter(a):
   ...:   a[0]=1
   ...:   return a

In [5]: rc[0].apply_sync(setter, A)
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)<string> in <module>()
<ipython-input-12-c3e7afeb3075> in setter(a)
RuntimeError: array is not writeable





If you do need to edit the array in-place, remember to copy the array if it’s read-only.
The ndarray.flags.writeable flag will tell you if you can write to an array.

In [3]: A = numpy.zeros(2)

In [4]: def setter(a):
   ...:     """only copy read-only arrays"""
   ...:     if not a.flags.writeable:
   ...:         a=a.copy()
   ...:     a[0]=1
   ...:     return a

In [5]: rc[0].apply_sync(setter, A)
Out[5]: array([ 1.,  0.])

# note that results will also be read-only:
In [6]: _.flags.writeable
Out[6]: False





If you want to safely edit an array in-place after sending it, you must use the track=True
flag. IPython always performs non-copying sends of arrays, which return immediately. You must
instruct IPython track those messages at send time in order to know for sure that the send has
completed. AsyncResults have a sent property, and wait_on_send() method for
checking and waiting for 0MQ to finish with a buffer.

In [5]: A = numpy.random.random((1024,1024))

In [6]: view.track=True

In [7]: ar = view.apply_async(lambda x: 2*x, A)

In [8]: ar.sent
Out[8]: False

In [9]: ar.wait_on_send() # blocks until sent is True








What is sendable?

If IPython doesn’t know what to do with an object, it will pickle it. There is a short list of
objects that are not pickled: buffers/memoryviews, bytes objects, and numpy
arrays. These are handled specially by IPython in order to prevent extra in-memory copies of data. Sending
bytes or numpy arrays will result in exactly zero in-memory copies of your data (unless the data
is very small).

If you have an object that provides a Python buffer interface, then you can always send that
buffer without copying - and reconstruct the object on the other side in your own code. It is
possible that the object reconstruction will become extensible, so you can add your own
non-copying types, but this does not yet exist.


Closures

Just about anything in Python is pickleable. The one notable exception is objects (generally
functions) with closures. Closures can be a complicated topic, but the basic principle is that
functions that refer to variables in their parent scope have closures.

An example of a function that uses a closure:

def f(a):
    def inner():
        # inner will have a closure
        return a
    return inner

f1 = f(1)
f2 = f(2)
f1() # returns 1
f2() # returns 2





f1 and f2 will have closures referring to the scope in which inner was defined,
because they use the variable ‘a’. As a result, you would not be able to send f1 or f2
with IPython. Note that you would be able to send f. This is only true for interactively
defined functions (as are often used in decorators), and only when there are variables used
inside the inner function, that are defined in the outer function. If the names are not in the
outer function, then there will not be a closure, and the generated function will look in
globals() for the name:

def g(b):
    # note that `b` is not referenced in inner's scope
    def inner():
        # this inner will *not* have a closure
        return a
    return inner
g1 = g(1)
g2 = g(2)
g1() # raises NameError on 'a'
a=5
g2() # returns 5





g1 and g2 will be sendable with IPython, and will treat the engine’s namespace as
globals().  The pull() method is implemented based on this principle.  If we did not
provide pull, you could implement it yourself with apply, by returning objects out
of the global namespace:

In [10]: view.apply(lambda : a)

# is equivalent to
In [11]: view.pull('a')





You can send functions with closures if you enable using dill or cloudpickle:

In [10]: rc[:].use_cloudpickle()





which will use a more advanced pickling library, which covers things like closures.








Running Code

There are two principal units of execution in Python: strings of Python code (e.g. ‘a=5’),
and Python functions.  IPython is designed around the use of functions via the core
Client method, called apply.


Apply

The principal method of remote execution is apply(), of
View objects. The Client provides the full execution and
communication API for engines via its low-level send_apply_message() method, which is used
by all higher level methods of its Views.


	ffunction

	The function to be called remotely



	argstuple/list

	The positional arguments passed to f



	kwargsdict

	The keyword arguments passed to f





flags for all views:


	blockbool (default: view.block)

	Whether to wait for the result, or return immediately.


	False:

	returns AsyncResult



	True:

	returns actual result(s) of f(*args, **kwargs)


	if multiple targets:

	list of results, matching targets











	trackbool [default view.track]

	whether to track non-copying sends.



	targetsint,list of ints, ‘all’, None [default view.targets]

	Specify the destination of the job.


	if ‘all’ or None:

	Run on all active engines



	if list:

	Run on each specified engine



	if int:

	Run on single engine










Note

LoadBalancedView uses targets to restrict possible destinations.
LoadBalanced calls will always execute on exactly one engine.



flags only in LoadBalancedViews:


	afterDependency or collection of msg_ids

	Only for load-balanced execution (targets=None)
Specify a list of msg_ids as a time-based dependency.
This job will only be run after the dependencies
have been met.



	followDependency or collection of msg_ids

	Only for load-balanced execution (targets=None)
Specify a list of msg_ids as a location-based dependency.
This job will only be run on an engine where this dependency
is met.



	timeoutfloat/int or None

	Only for load-balanced execution (targets=None)
Specify an amount of time (in seconds) for the scheduler to
wait for dependencies to be met before failing with a
DependencyTimeout.








execute and run

For executing strings of Python code, DirectView`s also provide an :meth:`execute and
a run() method, which rather than take functions and arguments, take Python strings.
execute takes a string of Python code to execute, and sends it to the Engine(s). run
is the same as execute, but for a file rather than a string. It is a wrapper that
does something very similar to execute(open(f).read()).


Note

TODO: Examples for execute and run








Views

The principal extension of the Client is the View
class. The client is typically a singleton for connecting to a cluster, and presents a
low-level interface to the Hub and Engines. Most real usage will involve creating one or more
View objects for working with engines in various ways.


DirectView

The DirectView is the class for the IPython Multiplexing Interface.


Creating a DirectView

DirectViews can be created in two ways, by index access to a client, or by a client’s
view() method.  Index access to a Client works in a few ways.  First, you can create
DirectViews to single engines by accessing the client by engine id:

In [2]: rc[0]
Out[2]: <DirectView 0>





You can also create a DirectView with a list of engines:

In [2]: rc[0,1,2]
Out[2]: <DirectView [0,1,2]>





Other methods for accessing elements, such as slicing and negative indexing, work by passing
the index directly to the client’s ids list, so:

# negative index
In [2]: rc[-1]
Out[2]: <DirectView 3>

# or slicing:
In [3]: rc[::2]
Out[3]: <DirectView [0,2]>





are always the same as:

In [2]: rc[rc.ids[-1]]
Out[2]: <DirectView 3>

In [3]: rc[rc.ids[::2]]
Out[3]: <DirectView [0,2]>





Also note that the slice is evaluated at the time of construction of the DirectView, so the
targets will not change over time if engines are added/removed from the cluster.




Execution via DirectView

The DirectView is the simplest way to work with one or more engines directly (hence the name).

For instance, to get the process ID of all your engines:

In [5]: import os

In [6]: dview.apply_sync(os.getpid)
Out[6]: [1354, 1356, 1358, 1360]





Or to see the hostname of the machine they are on:

In [5]: import socket

In [6]: dview.apply_sync(socket.gethostname)
Out[6]: ['tesla', 'tesla', 'edison', 'edison', 'edison']






Note

TODO: expand on direct execution






Data movement via DirectView

Since a Python namespace is a dict [https://docs.python.org/3/library/stdtypes.html#dict], DirectView objects provide
dictionary-style access by key and methods such as get() and
update() for convenience. This make the remote namespaces of the engines
appear as a local dictionary. Underneath, these methods call apply():

In [51]: dview['a']=['foo','bar']

In [52]: dview['a']
Out[52]: [ ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'] ]










Scatter and gather

Sometimes it is useful to partition a sequence and push the partitions to
different engines. In MPI language, this is know as scatter/gather and we
follow that terminology. However, it is important to remember that in
IPython’s Client class, scatter() is from the
interactive IPython session to the engines and gather() is from the
engines back to the interactive IPython session. For scatter/gather operations
between engines, MPI should be used:

In [58]: dview.scatter('a',range(16))
Out[58]: [None,None,None,None]

In [59]: dview['a']
Out[59]: [ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]

In [60]: dview.gather('a')
Out[60]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]








Push and pull

push()

pull()


Note

TODO: write this section






LoadBalancedView

The LoadBalancedView is the class for load-balanced execution via the task scheduler.
These views always run tasks on exactly one engine, but let the scheduler determine where that
should be, allowing load-balancing of tasks. The LoadBalancedView does allow you to specify
restrictions on where and when tasks can execute, for more complicated load-balanced workflows.






Data Movement

Since the LoadBalancedView does not know where execution will take place, explicit
data movement methods like push/pull and scatter/gather do not make sense, and are not provided.




Results


AsyncResults

Our primary representation of the results of remote execution is the AsyncResult
object, based on the object of the same name in the built-in multiprocessing.pool [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing.pool]
module. Our version provides a superset of that interface.

The basic principle of the AsyncResult is the encapsulation of one or more results not yet completed.  Execution methods (including data movement, such as push/pull) will all return
AsyncResults when block=False.




The mp.pool.AsyncResult interface

The basic interface of the AsyncResult is exactly that of the AsyncResult in multiprocessing.pool [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing.pool], and consists of four methods:


	
class AsyncResult

	The stdlib AsyncResult spec


	
wait([timeout])

	Wait until the result is available or until timeout seconds pass. This
method always returns None.






	
ready()

	Return whether the call has completed.






	
successful()

	Return whether the call completed without raising an exception.  Will
raise AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] if the result is not ready.






	
get([timeout])

	Return the result when it arrives.  If timeout is not None and the
result does not arrive within timeout seconds then
TimeoutError [https://docs.python.org/3/library/exceptions.html#TimeoutError] is raised.  If the remote call raised
an exception then that exception will be reraised as a RemoteError
by get().









While an AsyncResult is not done, you can check on it with its ready() method, which will
return whether the AR is done. You can also wait on an AsyncResult with its wait() method.
This method blocks until the result arrives. If you don’t want to wait forever, you can pass a
timeout (in seconds) as an argument to wait(). wait() will always return None, and
should never raise an error.

ready() and wait() are insensitive to the success or failure of the call. After a
result is done, successful() will tell you whether the call completed without raising an
exception.

If you want the result of the call, you can use get(). Initially, get()
behaves just like wait(), in that it will block until the result is ready, or until a
timeout is met. However, unlike wait(), get() will raise a TimeoutError [https://docs.python.org/3/library/exceptions.html#TimeoutError] if
the timeout is reached and the result is still not ready. If the result arrives before the
timeout is reached, then get() will return the result itself if no exception was raised,
and will raise an exception if there was.

Here is where we start to expand on the multiprocessing interface. Rather than raising the
original exception, a RemoteError will be raised, encapsulating the remote exception with some
metadata. If the AsyncResult represents multiple calls (e.g. any time targets is plural), then
a CompositeError, a subclass of RemoteError, will be raised.


See also

For more information on remote exceptions, see the section in the Direct Interface.




Extended interface

Other extensions of the AsyncResult interface include convenience wrappers for get().
AsyncResults have a property, result, with the short alias r, which call
get(). Since our object is designed for representing parallel results, it is expected
that many calls (any of those submitted via DirectView) will map results to engine IDs. We
provide a get_dict(), which is also a wrapper on get(), which returns a dictionary
of the individual results, keyed by engine ID.

You can also prevent a submitted job from executing, via the AsyncResult’s
abort() method. This will instruct engines to not execute the job when it arrives.

The larger extension of the AsyncResult API is the metadata attribute.  The metadata
is a dictionary (with attribute access) that contains, logically enough, metadata about the
execution.

Metadata keys:

timestamps


	submitted

	When the task left the Client



	started

	When the task started execution on the engine



	completed

	When execution finished on the engine



	received

	When the result arrived on the Client

note that it is not known when the result arrived in 0MQ on the client, only when it
arrived in Python via Client.spin(), so in interactive use, this may not be
strictly informative.





Information about the engine


	engine_id

	The integer id



	engine_uuid

	The UUID of the engine





output of the call


	error

	Python exception, if there was one



	execute_input

	The code (str) that was executed



	execute_result

	Python output of an execute request (not apply),
as a Jupyter message dictionary.



	stderr

	stderr stream



	stdout

	stdout (e.g. print) stream





And some extended information


	status

	either ‘ok’ or ‘error’



	msg_id

	The UUID of the message



	after

	For tasks: the time-based msg_id dependencies



	follow

	For tasks: the location-based msg_id dependencies





While in most cases, the Clients that submitted a request will be the ones using the results,
other Clients can also request results directly from the Hub. This is done via the Client’s
get_result() method. This method will always return an AsyncResult object. If the call
was not submitted by the client, then it will be a subclass, called AsyncHubResult.
These behave in the same way as an AsyncResult, but if the result is not ready, waiting on an
AsyncHubResult polls the Hub, which is much more expensive than the passive polling used
in regular AsyncResults.

The Client keeps track of all results
history, results, metadata








Querying the Hub

The Hub sees all traffic that may pass through the schedulers between engines and clients.
It does this so that it can track state, allowing multiple clients to retrieve results of
computations submitted by their peers, as well as persisting the state to a database.

queue_status


You can check the status of the queues of the engines with this command.




result_status


check on results




purge_results


forget results (conserve resources)







Controlling the Engines

There are a few actions you can do with Engines that do not involve execution.  These
messages are sent via the Control socket, and bypass any long queues of waiting execution
jobs

abort


Sometimes you may want to prevent a job you have submitted from running. The method
for this is abort(). It takes a container of msg_ids, and instructs the Engines to not
run the jobs if they arrive. The jobs will then fail with an AbortedTask error.




clear


You may want to purge the Engine(s) namespace of any data you have left in it.  After
running clear, there will be no names in the Engine’s namespace




shutdown


You can also instruct engines (and the Controller) to terminate from a Client.  This
can be useful when a job is finished, since you can shutdown all the processes with a
single command.







Synchronization

Since the Client is a synchronous object, events do not automatically trigger in your
interactive session - you must poll the 0MQ sockets for incoming messages.  Note that
this polling does not make any network requests.  It performs a select
operation, to check if messages are already in local memory, waiting to be handled.

The method that handles incoming messages is spin(). This method flushes any waiting
messages on the various incoming sockets, and updates the state of the Client.

If you need to wait for particular results to finish, you can use the wait() method,
which will call spin() until the messages are no longer outstanding. Anything that
represents a collection of messages, such as a list of msg_ids or one or more AsyncResult
objects, can be passed as argument to wait. A timeout can be specified, which will prevent
the call from blocking for more than a specified time, but the default behavior is to wait
forever.

The client also has an outstanding attribute - a set of msg_ids that are awaiting
replies. This is the default if wait is called with no arguments - i.e. wait on all
outstanding messages.


Note

TODO wait example






Map

Many parallel computing problems can be expressed as a map, or running a single program with
a variety of different inputs. Python has a built-in map() [https://docs.python.org/3/library/functions.html#map], which does exactly this,
and many parallel execution tools in Python, such as the built-in
multiprocessing.Pool object provide implementations of map. All View objects
provide a map() method as well, but the load-balanced and direct implementations differ.

Views’ map methods can be called on any number of sequences, but they can also take the block
and bound keyword arguments, just like apply(), but only as keywords.

dview.map(*sequences, block=None)






	iter, map_async, reduce







Decorators and RemoteFunctions


Note

TODO: write this section



parallel()

remote()

RemoteFunction

ParallelFunction




Dependencies


Note

TODO: write this section



depend()

require()

Dependency







          

      

      

    

  

    
      
          
            
  
Transitioning from IPython.kernel to ipyparallel

We have rewritten our parallel computing tools to use 0MQ [http://zeromq.org] and Tornado [https://github.com/tornadoweb/tornado].  The redesign
has resulted in dramatically improved performance, as well as (we think), an improved
interface for executing code remotely.  This doc is to help users of IPython.kernel
transition their codes to the new code.


Processes

The process model for the new parallel code is very similar to that of IPython.kernel. There is
still a Controller, Engines, and Clients. However, the the Controller is now split into multiple
processes, and can even be split across multiple machines. There does remain a single
ipcontroller script for starting all of the controller processes.


Note

TODO: fill this out after config system is updated




See also

Detailed Parallel Process doc for configuring and launching
IPython processes.






Creating a Client

Creating a client with default settings has not changed much, though the extended options have.
One significant change is that there are no longer multiple Client classes to represent the
various execution models. There is just one low-level Client object for connecting to the
cluster, and View objects are created from that Client that provide the different interfaces for
execution.

To create a new client, and set up the default direct and load-balanced objects:

# old
In [1]: from IPython.kernel import client as kclient

In [2]: mec = kclient.MultiEngineClient()

In [3]: tc = kclient.TaskClient()

# new
In [1]: import ipyparallel as ipp

In [2]: rc = ipp.Client()

In [3]: dview = rc[:]

In [4]: lbview = rc.load_balanced_view()








Apply

The main change to the API is the addition of the apply() to the View objects. This is a
method that takes view.apply(f,*args,**kwargs), and calls f(*args, **kwargs) remotely on one
or more engines, returning the result. This means that the natural unit of remote execution
is no longer a string of Python code, but rather a Python function.


	non-copying sends (track)


	remote References




The flags for execution have also changed.  Previously, there was only block denoting whether
to wait for results.  This remains, but due to the addition of fully non-copying sends of
arrays and buffers, there is also a track flag, which instructs PyZMQ to produce a MessageTracker that will let you know when it is safe again to edit arrays in-place.

The result of a non-blocking call to apply is now an AsyncResult object.




MultiEngine to DirectView

The multiplexing interface previously provided by the MultiEngineClient is now provided by the
DirectView. Once you have a Client connected, you can create a DirectView with index-access
to the client (view = client[1:5]). The core methods for
communicating with engines remain: execute, run, push, pull, scatter, gather. These
methods all behave in much the same way as they did on a MultiEngineClient.

# old
In [2]: mec.execute('a=5', targets=[0,1,2])

# new
In [2]: view.execute('a=5', targets=[0,1,2])
# or
In [2]: rc[0,1,2].execute('a=5')





This extends to any method that communicates with the engines.

Requests of the Hub (queue status, etc.) are no-longer asynchronous, and do not take a block
argument.


	get_ids() is now the property ids, which is passively updated by the Hub (no
need for network requests for an up-to-date list).


	barrier() has been renamed to wait(), and now takes an optional timeout. flush() is removed, as it is redundant with wait()


	zip_pull() has been removed


	keys() has been removed, but is easily implemented as:

dview.apply(lambda : globals().keys())







	push_function() and push_serialized() are removed, as push() handles
functions without issue.





See also

Our Direct Interface doc for a simple tutorial with the
DirectView.



The other major difference is the use of apply(). When remote work is comprised of functions,
the natural return value is the actual Python objects. It is no longer the recommended pattern
to use stdout as your results, due to stream decoupling and the asynchronous nature of how the
stdout streams are handled in the new system.




Task to LoadBalancedView

Load-Balancing has changed more than Multiplexing.  This is because there is no longer a notion
of a StringTask or a MapTask, there are Python functions to call.  Tasks are now
simpler, because they are no longer composites of push/execute/pull/clear calls, they are
a single function that takes arguments, and returns objects.

The load-balanced interface is provided by the LoadBalancedView class, created by the client:

In [10]: lbview = rc.load_balanced_view()

# load-balancing can also be restricted to a subset of engines:
In [10]: lbview = rc.load_balanced_view([1,2,3])





A simple task would consist of sending some data, calling a function on that data, plus some
data that was resident on the engine already, and then pulling back some results.  This can
all be done with a single function.

Let’s say you want to compute the dot product of two matrices, one of which resides on the
engine, and another resides on the client.  You might construct a task that looks like this:

In [10]: st = kclient.StringTask("""
            import numpy
            C=numpy.dot(A,B)
            """,
            push=dict(B=B),
            pull='C'
            )

In [11]: tid = tc.run(st)

In [12]: tr = tc.get_task_result(tid)

In [13]: C = tc['C']





In the new code, this is simpler:

In [10]: import numpy

In [12]: ar = lbview.apply(numpy.dot, ipp.Reference('A'), B)

In [13]: C = ar.get()





Note the use of Reference This is a convenient representation of an object that exists
in the engine’s namespace, so you can pass remote objects as arguments to your task functions.

Also note that in the kernel model, after the task is run, ‘A’, ‘B’, and ‘C’ are all defined on
the engine. In order to deal with this, there is also a clear_after flag for Tasks to prevent
pollution of the namespace, and bloating of engine memory. This is not necessary with the new
code, because only those objects explicitly pushed (or set via globals()) will be resident on
the engine beyond the duration of the task.


See also

Dependencies also work very differently than in IPython.kernel.  See our doc on Dependencies for details.




See also

Our Task Interface doc for a simple tutorial with the
LoadBalancedView.




PendingResults to AsyncResults

With the departure from Twisted, we no longer have the Deferred class for representing
unfinished results. For this, we have an AsyncResult object, based on the object of the same
name in the built-in multiprocessing.pool [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing.pool] module. Our version provides a superset of that
interface.

However, unlike in IPython.kernel, we do not have PendingDeferred, PendingResult, or TaskResult
objects. Simply this one object, the AsyncResult. Every asynchronous (block=False) call
returns one.

The basic methods of an AsyncResult are:

AsyncResult.wait([timeout]): # wait for the result to arrive
AsyncResult.get([timeout]): # wait for the result to arrive, and then return it
AsyncResult.metadata: # dict of extra information about execution.





There are still some things that behave the same as IPython.kernel:

# old
In [5]: pr = mec.pull('a', targets=[0,1], block=False)
In [6]: pr.r
Out[6]: [5, 5]

# new
In [5]: ar = dview.pull('a', targets=[0,1], block=False)
In [6]: ar.r
Out[6]: [5, 5]





The .r or .result property calls get(), waiting for and returning the
result.


See also

AsyncResult details











          

      

      

    

  

    
      
          
            
  
Messaging for Parallel Computing

This is an extension of the messaging [https://jupyter-client.readthedocs.io/en/stable/messaging.html#messaging] doc. Diagrams of the connections
can be found in the parallel connections doc.

ZMQ messaging is also used in the parallel computing IPython system. All messages to/from
kernels remain the same as the single kernel model, and are forwarded through a ZMQ Queue
device. The controller receives all messages and replies in these channels, and saves
results for future use.


The Controller

The controller is the central collection of processes in the IPython parallel computing
model. It has two major components:



	The Hub


	A collection of Schedulers










The Hub

The Hub is the central process for monitoring the state of the engines, and all task
requests and results.  It has no role in execution and does no relay of messages, so
large blocking requests or database actions in the Hub do not have the ability to impede
job submission and results.


Registration (ROUTER)

The first function of the Hub is to facilitate and monitor connections of clients
and engines. Both client and engine registration are handled by the same socket, so only
one ip/port pair is needed to connect any number of connections and clients.

Engines register with the zmq.IDENTITY of their two DEALER sockets, one for the
queue, which receives execute requests, and one for the heartbeat, which is used to
monitor the survival of the Engine process.

Message type: registration_request:

content = {
    'uuid'   : 'abcd-1234-...', # the zmq.IDENTITY of the engine's sockets
}






Note

these are always the same, at least for now.



The Controller replies to an Engine’s registration request with the engine’s integer ID,
and all the remaining connection information for connecting the heartbeat process, and
kernel queue socket(s). The message status will be an error if the Engine requests IDs that
already in use.

Message type: registration_reply:

content = {
    'status' : 'ok', # or 'error'
    # if ok:
    'id' : 0, # int, the engine id
}





Clients use the same socket as engines to start their connections. Connection requests
from clients need no information:

Message type: connection_request:

content = {}





The reply to a Client registration request contains the connection information for the
multiplexer and load balanced queues, as well as the address for direct hub
queries. If any of these addresses is None, that functionality is not available.

Message type: connection_reply:

content = {
    'status' : 'ok', # or 'error'
}








Heartbeat

The hub uses a heartbeat system to monitor engines, and track when they become
unresponsive. As described in messaging [https://jupyter-client.readthedocs.io/en/stable/messaging.html#messaging], and shown in connections.




Notification (PUB)

The hub publishes all engine registration/unregistration events on a PUB socket.
This allows clients to have up-to-date engine ID sets without polling. Registration
notifications contain both the integer engine ID and the queue ID, which is necessary for
sending messages via the Multiplexer Queue and Control Queues.

Message type: registration_notification:

content = {
    'id' : 0, # engine ID that has been registered
    'uuid' : 'engine_id' # the IDENT for the engine's sockets
}





Message type : unregistration_notification:

content = {
    'id' : 0 # engine ID that has been unregistered
    'uuid' : 'engine_id' # the IDENT for the engine's sockets
}








Client Queries (ROUTER)

The hub monitors and logs all queue traffic, so that clients can retrieve past
results or monitor pending tasks. This information may reside in-memory on the Hub, or
on disk in a database (SQLite and MongoDB are currently supported).  These requests are
handled by the same socket as registration.

queue_request() requests can specify multiple engines to query via the targets
element. A verbose flag can be passed, to determine whether the result should be the list
of msg_ids in the queue or the length of each list.

Message type: queue_request:

content = {
    'verbose' : True, # whether return should be lists themselves or the lengths thereof
    'targets' : [0,3,1] # list of ints
}





The content of a reply to a queue_request() request is a dict, keyed by the engine
IDs. Note that they will be the string representation of the integer keys, since JSON
cannot handle number keys.  The three keys of each dict are:

'completed' :  messages submitted via any queue that ran on the engine
'queue' : jobs submitted via MUX queue, whose results have not been received
'tasks' : tasks that are known to have been submitted to the engine, but
            have not completed.  Note that with the pure zmq scheduler, this will
            always be 0/[].





Message type: queue_reply:

content = {
    'status' : 'ok', # or 'error'
    # if verbose=False:
    '0' : {'completed' : 1, 'queue' : 7, 'tasks' : 0},
    # if verbose=True:
    '1' : {'completed' : ['abcd-...','1234-...'], 'queue' : ['58008-'], 'tasks' : []},
}





Clients can request individual results directly from the hub. This is primarily for
gathering results of executions not submitted by the requesting client, as the client
will have all its own results already. Requests are made by msg_id, and can contain one or
more msg_id. An additional boolean key ‘statusonly’ can be used to not request the
results, but poll the status of the jobs instead.

Message type: result_request:

content = {
    'msg_ids' : ['uuid','...'], # list of strs
    'targets' : [1,2,3], # list of int ids or uuids
    'statusonly' : False, # bool
}





The result_request() reply contains the content objects of the actual execution
reply messages. If statusonly=True, then there will be only the ‘pending’ and
‘completed’ lists.

Message type: result_reply:

content = {
    'status' : 'ok', # else error
    # if ok:
    'acbd-...' : msg, # the content dict is keyed by msg_ids,
                     # values are the result messages
                    # there will be none of these if `statusonly=True`
    'pending' : ['msg_id','...'], # msg_ids still pending
    'completed' : ['msg_id','...'], # list of completed msg_ids
}
buffers = ['bufs','...'] # the buffers that contained the results of the objects.
                        # this will be empty if no messages are complete, or if
                        # statusonly is True.





For memory management purposes, Clients can also instruct the hub to forget the
results of messages. This can be done by message ID or engine ID. Individual messages are
dropped by msg_id, and all messages completed on an engine are dropped by engine ID. This
may no longer be necessary with the mongodb-based message logging backend.

If the msg_ids element is the string 'all' instead of a list, then all completed
results are forgotten.

Message type: purge_request:

content = {
    'msg_ids' : ['id1', 'id2',...], # list of msg_ids or 'all'
    'engine_ids' : [0,2,4] # list of engine IDs
}





The reply to a purge request is the status ‘ok’ if the request succeeded, or an
explanation of why it failed, such as requesting the purge of a nonexistent or pending
message.

Message type: purge_reply:

content = {
    'status' : 'ok', # or 'error'
}










Schedulers

There are three basic schedulers:



	Task Scheduler


	MUX Scheduler


	Control Scheduler







The MUX and Control schedulers are simple MonitoredQueue ØMQ devices, with ROUTER
sockets on either side. This allows the queue to relay individual messages to particular
targets via zmq.IDENTITY routing. The Task scheduler may be a MonitoredQueue ØMQ
device, in which case the client-facing socket is ROUTER, and the engine-facing socket
is DEALER.  The result of this is that client-submitted messages are load-balanced via
the DEALER socket, but the engine’s replies to each message go to the requesting client.

Raw DEALER scheduling is quite primitive, and doesn’t allow message introspection, so
there are also Python Schedulers that can be used. These Schedulers behave in much the
same way as a MonitoredQueue does from the outside, but have rich internal logic to
determine destinations, as well as handle dependency graphs Their sockets are always
ROUTER on both sides.

The Python task schedulers have an additional message type, which informs the Hub of
the destination of a task as soon as that destination is known.

Message type: task_destination:

content = {
    'msg_id' : 'abcd-1234-...', # the msg's uuid
    'engine_id' : '1234-abcd-...', # the destination engine's zmq.IDENTITY
}






apply()

In terms of message classes, the MUX scheduler and Task scheduler relay the exact same
message types.  Their only difference lies in how the destination is selected.

The Namespace model suggests that execution be able to
use the model:

ns.apply(f, *args, **kwargs)





which takes f, a function in the user’s namespace, and executes f(*args, **kwargs)
on a remote engine, returning the result (or, for non-blocking, information facilitating
later retrieval of the result). This model, unlike the execute message which uses code as a
string, must be able to send arbitrary (pickleable) Python objects. And ideally, copy
as little data as we can. The buffers property of a Message was introduced for this
purpose.

Utility method build_apply_message() in IPython.kernel.zmq.serialize wraps a
function signature and builds a sendable buffer format for minimal data copying (exactly
zero copies of numpy array data or buffers or large strings).

Message type: apply_request:

metadata = {
    'after' : ['msg_id',...], # list of msg_ids or output of Dependency.as_dict()
    'follow' : ['msg_id',...], # list of msg_ids or output of Dependency.as_dict()
}
content = {}
buffers = ['...'] # at least 3 in length
                # as built by build_apply_message(f,args,kwargs)





after/follow represent task dependencies. ‘after’ corresponds to a time dependency. The
request will not arrive at an engine until the ‘after’ dependency tasks have completed.
‘follow’ corresponds to a location dependency. The task will be submitted to the same
engine as these msg_ids (see Dependency docs for details).

Message type: apply_reply:

content = {
    'status' : 'ok' # 'ok' or 'error'
    # other error info here, as in other messages
}
buffers = ['...'] # either 1 or 2 in length
                # a serialization of the return value of f(*args,**kwargs)
                # only populated if status is 'ok'





All engine execution and data movement is performed via apply messages.




Raw Data Publication

display_data lets you publish representations of data, such as images and html.
This data_pub message lets you publish actual raw data, sent via message buffers.

data_pub messages are constructed via the ipyparallel.datapub.publish_data() function:

from ipyparallel.datapub import publish_data
ns = dict(x=my_array)
publish_data(ns)





Message type: data_pub:

content = {
    # the keys of the data dict, after it has been unserialized
    'keys' : ['a', 'b']
}
# the namespace dict will be serialized in the message buffers,
# which will have a length of at least one
buffers = [b'pdict', ...]





The interpretation of a sequence of data_pub messages for a given parent request should be
to update a single namespace with subsequent results.






Control Messages

Messages that interact with the engines, but are not meant to execute code, are submitted
via the Control queue. These messages have high priority, and are thus received and
handled before any execution requests.

Clients may want to clear the namespace on the engine. There are no arguments nor
information involved in this request, so the content is empty.

Message type: clear_request:

content = {}





Message type: clear_reply:

content = {
    'status' : 'ok' # 'ok' or 'error'
    # other error info here, as in other messages
}





Clients may want to abort tasks that have not yet run. This can by done by message id, or
all enqueued messages can be aborted if None is specified.

Message type: abort_request:

content = {
    'msg_ids' : ['1234-...', '...'] # list of msg_ids or None
}





Message type: abort_reply:

content = {
    'status' : 'ok' # 'ok' or 'error'
    # other error info here, as in other messages
}





The last action a client may want to do is shutdown the kernel. If a kernel receives a
shutdown request, then it aborts all queued messages, replies to the request, and exits.

Message type: shutdown_request:

content = {}





Message type: shutdown_reply:

content = {
    'status' : 'ok' # 'ok' or 'error'
    # other error info here, as in other messages
}








Implementation

There are a few differences in implementation between the StreamSession object used in
the newparallel branch and the Session object, the main one being that messages are
sent in parts, rather than as a single serialized object. StreamSession objects also
take pack/unpack functions, which are to be used when serializing/deserializing objects.
These can be any functions that translate to/from formats that ZMQ sockets can send
(buffers,bytes, etc.).


Split Sends

Previously, messages were bundled as a single json object and one call to
socket.send_json(). Since the hub inspects all messages, and doesn’t need to
see the content of the messages, which can be large, messages are now serialized and sent in
pieces. All messages are sent in at least 4 parts: the header, the parent header, the metadata and the content.
This allows the controller to unpack and inspect the (always small) header,
without spending time unpacking the content unless the message is bound for the
controller. Buffers are added on to the end of the message, and can be any objects that
present the buffer interface.









          

      

      

    

  

    
      
          
            
  
Connection Diagrams of The IPython ZMQ Cluster

This is a quick summary and illustration of the connections involved in the ZeroMQ based
IPython cluster for parallel computing.


All Connections

The IPython cluster consists of a Controller, and one or more each of clients and engines.
The goal of the Controller is to manage and monitor the connections and communications
between the clients and the engines.  The Controller is no longer a single process entity,
but rather a collection of processes - specifically one Hub, and 4 (or more) Schedulers.

It is important for security/practicality reasons that all connections be inbound to the
controller processes. The arrows in the figures indicate the direction of the
connection.


[image: IPython cluster connections]
All the connections involved in connecting one client to one engine.



The Controller consists of 1-5 processes. Central to the cluster is the Hub, which monitors
engine state, execution traffic, and handles registration and notification. The Hub includes a
Heartbeat Monitor for keeping track of engines that are alive. Outside the Hub are 4
Schedulers. These devices are very small pure-C MonitoredQueue processes (or optionally
threads) that relay messages very fast, but also send a copy of each message along a side socket
to the Hub. The MUX queue and Control queue are MonitoredQueue ØMQ devices which relay
explicitly addressed messages from clients to engines, and their replies back up. The Balanced
queue performs load-balancing destination-agnostic scheduling. It may be a MonitoredQueue
device, but may also be a Python Scheduler that behaves externally in an identical fashion to MQ
devices, but with additional internal logic. stdout/err are also propagated from the Engines to
the clients via a PUB/SUB MonitoredQueue.


Registration


[image: IPython Registration connections]
Engines and Clients only need to know where the Query ROUTER is located to start
connecting.



Once a controller is launched, the only information needed for connecting clients and/or
engines is the IP/port of the Hub’s ROUTER socket called the Registrar. This socket
handles connections from both clients and engines, and replies with the remaining
information necessary to establish the remaining connections. Clients use this same socket for
querying the Hub for state information.




Heartbeat


[image: IPython Heartbeat connections]
The heartbeat sockets.



The heartbeat process has been described elsewhere. To summarize: the Heartbeat Monitor
publishes a distinct message periodically via a PUB socket. Each engine has a
zmq.FORWARDER device with a SUB socket for input, and DEALER socket for output.
The SUB socket is connected to the PUB socket labeled ping, and the DEALER is
connected to the ROUTER labeled pong. This results in the same message being relayed
back to the Heartbeat Monitor with the addition of the DEALER prefix. The Heartbeat
Monitor receives all the replies via an ROUTER socket, and identifies which hearts are
still beating by the zmq.IDENTITY prefix of the DEALER sockets, which information
the Hub uses to notify clients of any changes in the available engines.




Schedulers


[image: IPython Queue connections]
Control message scheduler on the left, execution (apply) schedulers on the right.



The controller has at least three Schedulers. These devices are primarily for
relaying messages between clients and engines, but the Hub needs to see those
messages for its own purposes. Since no Python code may exist between the two sockets in a
queue, all messages sent through these queues (both directions) are also sent via a
PUB socket to a monitor, which allows the Hub to monitor queue traffic without
interfering with it.

For tasks, the engine need not be specified. Messages sent to the ROUTER socket from the
client side are assigned to an engine via ZMQ’s DEALER round-robin load balancing.
Engine replies are directed to specific clients via the IDENTITY of the client, which is
received as a prefix at the Engine.

For Multiplexing, ROUTER is used for both in and output sockets in the device. Clients must
specify the destination by the zmq.IDENTITY of the ROUTER socket connected to
the downstream end of the device.

At the Kernel level, both of these ROUTER sockets are treated in the same way as the REP
socket in the serial version (except using ZMQStreams instead of explicit sockets).

Execution can be done in a load-balanced (engine-agnostic) or multiplexed (engine-specified)
manner. The sockets on the Client and Engine are the same for these two actions, but the
scheduler used determines the actual behavior. This routing is done via the zmq.IDENTITY of
the upstream sockets in each MonitoredQueue.




IOPub


[image: IOPub connections]
stdout/err are published via a PUB/SUB MonitoredQueue



On the kernels, stdout/stderr are captured and published via a PUB socket. These PUB
sockets all connect to a SUB socket input of a MonitoredQueue, which subscribes to all
messages. They are then republished via another PUB socket, which can be
subscribed by the clients.




Client connections


[image: IPython client query connections]
Clients connect to an ROUTER socket to query the hub.



The hub’s registrar ROUTER socket also listens for queries from clients as to queue status,
and control instructions. Clients connect to this socket via an DEALER during registration.


[image: IPython Registration connections]
Engine registration events are published via a PUB socket.



The Hub publishes all registration/unregistration events via a PUB socket. This
allows clients to stay up to date with what engines are available by subscribing to the
feed with a SUB socket. Other processes could selectively subscribe to just
registration or unregistration events.









          

      

      

    

  

    
      
          
            
  
ipyparallel


	
ipyparallel.version_info = (6, 1, 1)

	tuple() -> empty tuple
tuple(iterable) -> tuple initialized from iterable’s items

If the argument is a tuple, the return value is the same object.
The IPython parallel version as a tuple of integers.
There will always be 3 integers. Development releases will have ‘dev’ as a fourth element.






Classes


	
class ipyparallel.Client(url_file=None, profile=None, profile_dir=None, ipython_dir=None, context=None, debug=False, sshserver=None, sshkey=None, password=None, paramiko=None, timeout=10, cluster_id=None, **extra_args)

	A semi-synchronous client to an IPython parallel cluster


	Parameters

	
	url_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to ipcontroller-client.json.
This JSON file should contain all the information needed to connect to a cluster,
and is likely the only argument needed.
Connection information for the Hub’s registration.  If a json connector
file is given, then likely no further configuration is necessary.
[Default: use profile]


	profile (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The name of the Cluster profile to be used to find connector information.
If run from an IPython application, the default profile will be the same
as the running application, otherwise it will be ‘default’.


	cluster_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – String id to added to runtime files, to prevent name collisions when using
multiple clusters with a single profile simultaneously.
When set, will look for files named like: ‘ipcontroller-<cluster_id>-client.json’
Since this is text inserted into filenames, typical recommendations apply:
Simple character strings are ideal, and spaces are not recommended (but
should generally work)


	context (zmq.Context) – Pass an existing zmq.Context instance, otherwise the client will create its own.


	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – flag for lots of message printing for debug purposes


	timeout (float [https://docs.python.org/3/library/functions.html#float]) – time (in seconds) to wait for connection replies from the Hub
[Default: 10]






	Other Parameters

	
	sshserver (str) – A string of the form passed to ssh, i.e. ‘server.tld’ or ‘user@server.tld:port’
If keyfile or password is specified, and this is not, it will default to
the ip given in addr.


	sshkey (str; path to ssh private key file) – This specifies a key to be used in ssh login, default None.
Regular default ssh keys will be used without specifying this argument.


	password (str) – Your ssh password to sshserver. Note that if this is left None,
you will be prompted for it if passwordless key based login is unavailable.


	paramiko (bool) – flag for whether to use paramiko instead of shell ssh for tunneling.
[default: True on win32, False else]









	
ids

	list of int engine IDs – requesting the ids attribute always synchronizes
the registration state. To request ids without synchronization,
use semi-private _ids attributes.






	
history

	list of msg_ids – a list of msg_ids, keeping track of all the execution
messages you have submitted in order.






	
outstanding

	set of msg_ids – a set of msg_ids that have been submitted, but whose
results have not yet been received.






	
results

	dict – a dict of all our results, keyed by msg_id






	
block

	bool – determines default behavior when block not specified
in execution methods






	
abort(jobs=None, targets=None, block=None)

	Abort specific jobs from the execution queues of target(s).

This is a mechanism to prevent jobs that have already been submitted
from executing.


	Parameters

	jobs (msg_id, list of msg_ids, or AsyncResult) – The jobs to be aborted

If unspecified/None: abort all outstanding jobs.












	
activate(targets='all', suffix='')

	Create a DirectView and register it with IPython magics

Defines the magics %px, %autopx, %pxresult, %%px


	Parameters

	
	targets (int [https://docs.python.org/3/library/functions.html#int], list of ints, or 'all') – The engines on which the view’s magics will run


	suffix (str [https://docs.python.org/3/library/stdtypes.html#str] [default: '']) – The suffix, if any, for the magics.  This allows you to have
multiple views associated with parallel magics at the same time.

e.g. rc.activate(targets=0, suffix='0') will give you
the magics %px0, %pxresult0, etc. for running magics just
on engine 0.















	
become_dask(targets='all', port=0, nanny=False, scheduler_args=None, **worker_args)

	Turn the IPython cluster into a dask.distributed cluster


	Parameters

	
	targets (target spec (default: all)) – Which engines to turn into dask workers.


	port (int [https://docs.python.org/3/library/functions.html#int] (default: random)) – Which port


	nanny (bool [https://docs.python.org/3/library/functions.html#bool] (default: False)) – Whether to start workers as subprocesses instead of in the engine process.
Using a nanny allows restarting the worker processes via executor.restart.


	scheduler_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments (e.g. ip) to pass to the distributed.Scheduler constructor.


	**worker_args – Any additional keyword arguments (e.g. ncores) are passed to the distributed.Worker constructor.






	Returns

	A dask.distributed.Client connected to the dask cluster.



	Return type

	client = distributed.Client










	
become_distributed(targets='all', port=0, nanny=False, scheduler_args=None, **worker_args)

	Turn the IPython cluster into a dask.distributed cluster


	Parameters

	
	targets (target spec (default: all)) – Which engines to turn into dask workers.


	port (int [https://docs.python.org/3/library/functions.html#int] (default: random)) – Which port


	nanny (bool [https://docs.python.org/3/library/functions.html#bool] (default: False)) – Whether to start workers as subprocesses instead of in the engine process.
Using a nanny allows restarting the worker processes via executor.restart.


	scheduler_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments (e.g. ip) to pass to the distributed.Scheduler constructor.


	**worker_args – Any additional keyword arguments (e.g. ncores) are passed to the distributed.Worker constructor.






	Returns

	A dask.distributed.Client connected to the dask cluster.



	Return type

	client = distributed.Client










	
clear(targets=None, block=None)

	Clear the namespace in target(s).






	
close(linger=None)

	Close my zmq Sockets

If linger, set the zmq LINGER socket option,
which allows discarding of messages.






	
db_query(query, keys=None)

	Query the Hub’s TaskRecord database

This will return a list of task record dicts that match query


	Parameters

	
	query (mongodb query dict) – The search dict. See mongodb query docs for details.


	keys (list of strs [optional]) – The subset of keys to be returned.  The default is to fetch everything but buffers.
‘msg_id’ will always be included.













	
direct_view(targets='all', **kwargs)

	construct a DirectView object.

If no targets are specified, create a DirectView using all engines.

rc.direct_view(‘all’) is distinguished from rc[:] in that ‘all’ will
evaluate the target engines at each execution, whereas rc[:] will connect to
all current engines, and that list will not change.

That is, ‘all’ will always use all engines, whereas rc[:] will not use
engines added after the DirectView is constructed.


	Parameters

	
	targets (list [https://docs.python.org/3/library/stdtypes.html#list],slice [https://docs.python.org/3/library/functions.html#slice],int [https://docs.python.org/3/library/functions.html#int],etc. [default: use all engines]) – The engines to use for the View


	kwargs (passed to DirectView) – 













	
executor(targets=None)

	Construct a PEP-3148 Executor with a LoadBalancedView


	Parameters

	targets (list [https://docs.python.org/3/library/stdtypes.html#list],slice [https://docs.python.org/3/library/functions.html#slice],int [https://docs.python.org/3/library/functions.html#int],etc. [default: use all engines]) – The subset of engines across which to load-balance execution



	Returns

	executor – The Executor object



	Return type

	Executor










	
get_result(indices_or_msg_ids=None, block=None, owner=True)

	Retrieve a result by msg_id or history index, wrapped in an AsyncResult object.

If the client already has the results, no request to the Hub will be made.

This is a convenient way to construct AsyncResult objects, which are wrappers
that include metadata about execution, and allow for awaiting results that
were not submitted by this Client.

It can also be a convenient way to retrieve the metadata associated with
blocking execution, since it always retrieves

Examples

In [10]: r = client.apply()






	Parameters

	
	indices_or_msg_ids (integer history index, str msg_id, AsyncResult,) – or a list of same.
The indices or msg_ids of indices to be retrieved


	block (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to wait for the result to be done


	owner (bool [https://docs.python.org/3/library/functions.html#bool] [default: True]) – Whether this AsyncResult should own the result.
If so, calling ar.get() will remove data from the
client’s result and metadata cache.
There should only be one owner of any given msg_id.






	Returns

	
	AsyncResult – A single AsyncResult object will always be returned.


	AsyncHubResult – A subclass of AsyncResult that retrieves results from the Hub















	
hub_history()

	Get the Hub’s history

Just like the Client, the Hub has a history, which is a list of msg_ids.
This will contain the history of all clients, and, depending on configuration,
may contain history across multiple cluster sessions.

Any msg_id returned here is a valid argument to get_result.


	Returns

	msg_ids – list of all msg_ids, ordered by task submission time.



	Return type

	list of strs










	
ids

	Always up-to-date ids property.






	
load_balanced_view(targets=None, **kwargs)

	construct a DirectView object.

If no arguments are specified, create a LoadBalancedView
using all engines.


	Parameters

	
	targets (list [https://docs.python.org/3/library/stdtypes.html#list],slice [https://docs.python.org/3/library/functions.html#slice],int [https://docs.python.org/3/library/functions.html#int],etc. [default: use all engines]) – The subset of engines across which to load-balance execution


	kwargs (passed to LoadBalancedView) – 













	
purge_everything()

	Clears all content from previous Tasks from both the hub and the local client

In addition to calling purge_results(“all”) it also deletes the history and
other bookkeeping lists.






	
purge_hub_results(jobs=[], targets=[])

	Tell the Hub to forget results.

Individual results can be purged by msg_id, or the entire
history of specific targets can be purged.

Use purge_results(‘all’) to scrub everything from the Hub’s db.


	Parameters

	
	jobs (str [https://docs.python.org/3/library/stdtypes.html#str] or list of str or AsyncResult objects) – the msg_ids whose results should be forgotten.


	targets (int/str/list of ints/strs) – The targets, by int_id, whose entire history is to be purged.

default : None















	
purge_local_results(jobs=[], targets=[])

	Clears the client caches of results and their metadata.

Individual results can be purged by msg_id, or the entire
history of specific targets can be purged.

Use purge_local_results(‘all’) to scrub everything from the Clients’s
results and metadata caches.

After this call all AsyncResults are invalid and should be discarded.

If you must “reget” the results, you can still do so by using
client.get_result(msg_id) or client.get_result(asyncresult). This will
redownload the results from the hub if they are still available
(i.e client.purge_hub_results(…) has not been called.


	Parameters

	
	jobs (str [https://docs.python.org/3/library/stdtypes.html#str] or list of str or AsyncResult objects) – the msg_ids whose results should be purged.


	targets (int/list of ints) – The engines, by integer ID, whose entire result histories are to be purged.






	Raises

	RuntimeError : if any of the tasks to be purged are still outstanding.










	
purge_results(jobs=[], targets=[])

	Clears the cached results from both the hub and the local client

Individual results can be purged by msg_id, or the entire
history of specific targets can be purged.

Use purge_results(‘all’) to scrub every cached result from both the Hub’s and
the Client’s db.

Equivalent to calling both purge_hub_results() and purge_client_results() with
the same arguments.


	Parameters

	
	jobs (str [https://docs.python.org/3/library/stdtypes.html#str] or list of str or AsyncResult objects) – the msg_ids whose results should be forgotten.


	targets (int/str/list of ints/strs) – The targets, by int_id, whose entire history is to be purged.

default : None















	
queue_status(targets='all', verbose=False)

	Fetch the status of engine queues.


	Parameters

	
	targets (int/str/list of ints/strs) – the engines whose states are to be queried.
default : all


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to return lengths only, or lists of ids for each element













	
resubmit(indices_or_msg_ids=None, metadata=None, block=None)

	Resubmit one or more tasks.

in-flight tasks may not be resubmitted.


	Parameters

	
	indices_or_msg_ids (integer history index, str msg_id, or list of either) – The indices or msg_ids of indices to be retrieved


	block (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to wait for the result to be done






	Returns

	A subclass of AsyncResult that retrieves results from the Hub



	Return type

	AsyncHubResult










	
result_status(msg_ids, status_only=True)

	Check on the status of the result(s) of the apply request with msg_ids.

If status_only is False, then the actual results will be retrieved, else
only the status of the results will be checked.


	Parameters

	
	msg_ids (list of msg_ids) – 
	if int:

	Passed as index to self.history for convenience.








	status_only (bool [https://docs.python.org/3/library/functions.html#bool] (default: True)) – 
	if False:

	Retrieve the actual results of completed tasks.












	Returns

	results – There will always be the keys ‘pending’ and ‘completed’, which will
be lists of msg_ids that are incomplete or complete. If status_only
is False, then completed results will be keyed by their msg_id.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
send_apply_request(socket, f, args=None, kwargs=None, metadata=None, track=False, ident=None)

	construct and send an apply message via a socket.

This is the principal method with which all engine execution is performed by views.






	
send_execute_request(socket, code, silent=True, metadata=None, ident=None)

	construct and send an execute request via a socket.






	
shutdown(targets='all', restart=False, hub=False, block=None)

	Terminates one or more engine processes, optionally including the hub.


	Parameters

	
	targets (list of ints or 'all' [default: all]) – Which engines to shutdown.


	hub (bool [https://docs.python.org/3/library/functions.html#bool] [default: False]) – Whether to include the Hub.  hub=True implies targets=’all’.


	block (bool [https://docs.python.org/3/library/functions.html#bool] [default: self.block]) – Whether to wait for clean shutdown replies or not.


	restart (bool [https://docs.python.org/3/library/functions.html#bool] [default: False]) – NOT IMPLEMENTED
whether to restart engines after shutting them down.













	
spin()

	DEPRECATED, DOES NOTHING






	
spin_thread(interval=1)

	DEPRECATED, DOES NOTHING






	
stop_dask(targets='all')

	Stop the distributed Scheduler and Workers started by become_dask.


	Parameters

	targets (target spec (default: all)) – Which engines to stop dask workers on.










	
stop_distributed(targets='all')

	Stop the distributed Scheduler and Workers started by become_dask.


	Parameters

	targets (target spec (default: all)) – Which engines to stop dask workers on.










	
stop_spin_thread()

	DEPRECATED, DOES NOTHING






	
wait(jobs=None, timeout=-1)

	waits on one or more jobs, for up to timeout seconds.


	Parameters

	
	jobs (int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], or list of ints and/or strs, or one or more AsyncResult objects) – ints are indices to self.history
strs are msg_ids
default: wait on all outstanding messages


	timeout (float [https://docs.python.org/3/library/functions.html#float]) – a time in seconds, after which to give up.
default is -1, which means no timeout






	Returns

	
	True (when all msg_ids are done)


	False (timeout reached, some msg_ids still outstanding)















	
wait_interactive(jobs=None, interval=1.0, timeout=-1.0)

	Wait interactively for jobs

If no job is specified, will wait for all outstanding jobs to complete.










	
class ipyparallel.DirectView(client=None, socket=None, targets=None)

	Direct Multiplexer View of one or more engines.

These are created via indexed access to a client:

>>> dv_1 = client[1]
>>> dv_all = client[:]
>>> dv_even = client[::2]
>>> dv_some = client[1:3]





This object provides dictionary access to engine namespaces:

# push a=5:
>>> dv[‘a’] = 5
# pull ‘foo’:
>>> dv[‘foo’]


	
activate(suffix='')

	Activate IPython magics associated with this View

Defines the magics %px, %autopx, %pxresult, %%px, %pxconfig


	Parameters

	suffix (str [https://docs.python.org/3/library/stdtypes.html#str] [default: '']) – The suffix, if any, for the magics.  This allows you to have
multiple views associated with parallel magics at the same time.

e.g. rc[::2].activate(suffix='_even') will give you
the magics %px_even, %pxresult_even, etc. for running magics
on the even engines.












	
clear(targets=None, block=None)

	Clear the remote namespaces on my engines.






	
execute(code, silent=True, targets=None, block=None)

	Executes code on targets in blocking or nonblocking manner.

execute is always bound (affects engine namespace)


	Parameters

	
	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – the code string to be executed


	block (bool [https://docs.python.org/3/library/functions.html#bool]) – whether or not to wait until done to return
default: self.block













	
gather(key, dist='b', targets=None, block=None)

	Gather a partitioned sequence on a set of engines as a single local seq.






	
get(key_s)

	get object(s) by key_s from remote namespace

see pull for details.






	
importer

	sync_imports(local=True) as a property.

See sync_imports for details.






	
map(f, *sequences, **kwargs)

	view.map(f, *sequences, block=self.block) => list|AsyncMapResult

Parallel version of builtin map, using this View’s targets.

There will be one task per target, so work will be chunked
if the sequences are longer than targets.

Results can be iterated as they are ready, but will become available in chunks.


	Parameters

	
	f (callable [https://docs.python.org/3/library/functions.html#callable]) – function to be mapped


	*sequences (one or more sequences of matching length) – the sequences to be distributed and passed to f


	block (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to wait for the result or not [default self.block]






	Returns

	
	If block=False – An AsyncMapResult instance.
An object like AsyncResult, but which reassembles the sequence of results
into a single list. AsyncMapResults can be iterated through before all
results are complete.


	else – A list, the result of map(f,*sequences)















	
pull(names, targets=None, block=None)

	get object(s) by name from remote namespace

will return one object if it is a key.
can also take a list of keys, in which case it will return a list of objects.






	
push(ns, targets=None, block=None, track=None)

	update remote namespace with dict ns


	Parameters

	
	ns (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dict of keys with which to update engine namespace(s)


	block (bool [https://docs.python.org/3/library/functions.html#bool] [default : self.block]) – whether to wait to be notified of engine receipt













	
run(filename, targets=None, block=None)

	Execute contents of filename on my engine(s).

This simply reads the contents of the file and calls execute.


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the file


	targets (int/str/list of ints/strs) – the engines on which to execute
default : all


	block (bool [https://docs.python.org/3/library/functions.html#bool]) – whether or not to wait until done
default: self.block













	
scatter(key, seq, dist='b', flatten=False, targets=None, block=None, track=None)

	Partition a Python sequence and send the partitions to a set of engines.






	
sync_imports(local=True, quiet=False)

	Context Manager for performing simultaneous local and remote imports.

‘import x as y’ will not work.  The ‘as y’ part will simply be ignored.

If local=True, then the package will also be imported locally.

If quiet=True, no output will be produced when attempting remote
imports.

Note that remote-only (local=False) imports have not been implemented.

>>> with view.sync_imports():
...    from numpy import recarray
importing recarray from numpy on engine(s)










	
update(ns)

	update remote namespace with dict ns

See push for details.






	
use_cloudpickle()

	Expand serialization support with cloudpickle.

This calls ipyparallel.serialize.use_cloudpickle() here and on each engine.






	
use_dill()

	Expand serialization support with dill

adds support for closures, etc.

This calls ipyparallel.serialize.use_dill() here and on each engine.






	
use_pickle()

	Restore

This reverts changes to serialization caused by use_dill|.cloudpickle.










	
class ipyparallel.LoadBalancedView(client=None, socket=None, **flags)

	An load-balancing View that only executes via the Task scheduler.

Load-balanced views can be created with the client’s view method:

>>> v = client.load_balanced_view()





or targets can be specified, to restrict the potential destinations:

>>> v = client.load_balanced_view([1,3])





which would restrict loadbalancing to between engines 1 and 3.


	
map(f, *sequences, **kwargs)

	view.map(f, *sequences, block=self.block, chunksize=1, ordered=True) => list|AsyncMapResult

Parallel version of builtin map, load-balanced by this View.

block, and chunksize can be specified by keyword only.

Each chunksize elements will be a separate task, and will be
load-balanced. This lets individual elements be available for iteration
as soon as they arrive.


	Parameters

	
	f (callable [https://docs.python.org/3/library/functions.html#callable]) – function to be mapped


	*sequences (one or more sequences of matching length) – the sequences to be distributed and passed to f


	block (bool [https://docs.python.org/3/library/functions.html#bool] [default self.block]) – whether to wait for the result or not


	track (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to create a MessageTracker to allow the user to
safely edit after arrays and buffers during non-copying
sends.


	chunksize (int [https://docs.python.org/3/library/functions.html#int] [default 1]) – how many elements should be in each task.


	ordered (bool [https://docs.python.org/3/library/functions.html#bool] [default True]) – Whether the results should be gathered as they arrive, or enforce
the order of submission.

Only applies when iterating through AsyncMapResult as results arrive.
Has no effect when block=True.








	Returns

	
	if block=False – An AsyncMapResult instance.
An object like AsyncResult, but which reassembles the sequence of results
into a single list. AsyncMapResults can be iterated through before all
results are complete.


	else – A list, the result of map(f,*sequences)















	
register_joblib_backend(name='ipyparallel', make_default=False)

	Register this View as a joblib parallel backend

To make this the default backend, set make_default=True.

Use with:

p = Parallel(backend='ipyparallel')
...





See joblib docs for details

Requires joblib >= 0.10


New in version 5.1.








	
set_flags(**kwargs)

	set my attribute flags by keyword.

A View is a wrapper for the Client’s apply method, but with attributes
that specify keyword arguments, those attributes can be set by keyword
argument with this method.


	Parameters

	
	block (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to wait for results


	track (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to create a MessageTracker to allow the user to
safely edit after arrays and buffers during non-copying
sends.


	after (Dependency or collection of msg_ids) – Only for load-balanced execution (targets=None)
Specify a list of msg_ids as a time-based dependency.
This job will only be run after the dependencies
have been met.


	follow (Dependency or collection of msg_ids) – Only for load-balanced execution (targets=None)
Specify a list of msg_ids as a location-based dependency.
This job will only be run on an engine where this dependency
is met.


	timeout (float/int or None [https://docs.python.org/3/library/constants.html#None]) – Only for load-balanced execution (targets=None)
Specify an amount of time (in seconds) for the scheduler to
wait for dependencies to be met before failing with a
DependencyTimeout.


	retries (int [https://docs.python.org/3/library/functions.html#int]) – Number of times a task will be retried on failure.

















	
class ipyparallel.ViewExecutor(view)

	A PEP-3148 Executor API for Views

Access as view.executor


	
map(func, *iterables, **kwargs)

	Return generator for View.map_async






	
shutdown(wait=True)

	ViewExecutor does not shutdown engines

results are awaited if wait=True, but engines are not shutdown.






	
submit(fn, *args, **kwargs)

	Same as View.apply_async












Decorators

IPython parallel provides some decorators to assist in using your functions as tasks.


	
ipyparallel.interactive(f)

	decorator for making functions appear as interactively defined.
This results in the function being linked to the user_ns as globals()
instead of the module globals().






	
ipyparallel.require(*objects, **mapping)

	Simple decorator for requiring local objects and modules to be available
when the decorated function is called on the engine.

Modules specified by name or passed directly will be imported
prior to calling the decorated function.

Objects other than modules will be pushed as a part of the task.
Functions can be passed positionally,
and will be pushed to the engine with their __name__.
Other objects can be passed by keyword arg.

Examples

In [1]: @ipp.require('numpy')
   ...: def norm(a):
   ...:     return numpy.linalg.norm(a,2)





In [2]: foo = lambda x: x*x
In [3]: @ipp.require(foo)
   ...: def bar(a):
   ...:     return foo(1-a)










	
ipyparallel.depend(_wrapped_f, *args, **kwargs)

	Dependency decorator, for use with tasks.

@depend lets you define a function for engine dependencies
just like you use apply for tasks.

Examples

@depend(df, a,b, c=5)
def f(m,n,p)

view.apply(f, 1,2,3)





will call df(a,b,c=5) on the engine, and if it returns False or
raises an UnmetDependency error, then the task will not be run
and another engine will be tried.






	
ipyparallel.remote(view, block=None, **flags)

	Turn a function into a remote function.

This method can be used for map:

In [1]: @remote(view,block=True)
   ...: def func(a):
   ...:    pass










	
ipyparallel.parallel(view, dist='b', block=None, ordered=True, **flags)

	Turn a function into a parallel remote function.

This method can be used for map:

In [1]: @parallel(view, block=True)
   ...: def func(a):
   ...:    pass












Exceptions


	
exception ipyparallel.RemoteError(ename, evalue, traceback, engine_info=None)

	Error raised elsewhere






	
exception ipyparallel.CompositeError(message, elist)

	Error for representing possibly multiple errors on engines






	
exception ipyparallel.NoEnginesRegistered

	




	
exception ipyparallel.ImpossibleDependency

	




	
exception ipyparallel.InvalidDependency
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